Inicio  /  Geosciences  /  Vol: 9 Par: 10 (2019)  /  Artículo
ARTÍCULO
TITULO

The College Park, Maryland, Tornado of 24 September 2001

Kenneth L. Pryor    
Tyler Wawrzyniak and Da-Lin Zhang    

Resumen

The 24 September 2001 College Park, Maryland, tornado was a long-track and strong tornado that passed within a close range of two Doppler radars. It was the third in a series of three tornadoes associated with a supercell storm that developed in Stafford County, Virginia, and initiated 3?4 km southwest of College Park and dissipated near Columbia, Howard County. The supercell tracked approximately 120 km and lasted for about 126 min. This study presents a synoptic and mesoscale overview of favorable conditions and forcing mechanisms that resulted in the severe convective outbreak associated with the College Park tornado. The results show many critical elements of the tornadic event, including a negative-tilted upper-level trough over the Ohio Valley, a jet stream with moderate vertical shear, a low-level warm, moist tongue of the air associated with strong southerly flow over south-central Maryland and Virginia, and significantly increased convective available potential energy (CAPE) during the late afternoon hours. A possible role of the urban heat island effects from Washington, DC, in increasing CAPE for the development of the supercell is discussed. Satellite imagery reveals the banded convective morphology with high cloud tops associated with the supercell that produced the College Park tornado. Operational WSR-88D data exhibit a high reflectivity ?debris ball? or tornadic debris signature (TDS) within the hook echo, the evolution of the parent storm from a supercell structure to a bow echo, and a tornado cyclone signature (TCS). Many of the mesoscale features could be captured by contemporary numerical model analyses. This study concludes with a discussion of the effectiveness of the coordinated use of satellite and radar observations in the operational environment of nowcasting severe convection.