ARTÍCULO
TITULO

Real-Time Ship Tracking under Challenges of Scale Variation and Different Visibility Weather Conditions

Hu Liu    
Xueqian Xu    
Xinqiang Chen    
Chaofeng Li and Meilin Wang    

Resumen

Visual ship tracking provides crucial kinematic traffic information to maritime traffic participants, which helps to accurately predict ship traveling behaviors in the near future. Traditional ship tracking models obtain a satisfactory performance by exploiting distinct features from maritime images, which may fail when the ship scale varies in image sequences. Moreover, previous frameworks have not paid much attention to weather condition interferences (e.g., visibility). To address this challenge, we propose a scale-adaptive ship tracking framework with the help of a kernelized correlation filter (KCF) and a log-polar transformation operation. First, the proposed ship tracker employs a conventional KCF model to obtain the raw ship position in the current maritime image. Second, both the previous step output and ship training sample are transformed into a log-polar coordinate system, which are further processed with the correlation filter to determine ship scale factor and to suppress the negative influence of the weather conditions. We verify the proposed ship tracker performance on three typical maritime scenarios under typical navigational weather conditions (i.e., sunny, fog). The findings of the study can help traffic participants efficiently obtain maritime situation awareness information from maritime videos, in real time, under different visibility weather conditions.

 Artículos similares

       
 
Baris Yigin and Metin Celik    
In recent years, advanced methods and smart solutions have been investigated for the safe, secure, and environmentally friendly operation of ships. Since data acquisition capabilities have improved, data processing has become of great importance for ship... ver más

 
Zhiqiang Jiang, Yongyan Ma and Weijia Li    
Accurate forecasting of ship motion is of great significance for ensuring maritime operational safety and working efficiency. A data-driven ship motion forecast method is proposed in this paper, aiming at the problems of low generalization of a single fo... ver más

 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más

 
Xiaobin Qian, Helong Shen, Yong Yin and Dongdong Guo    
In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm based on the Laguerre function for dynamic positioning ships to solve the problems of input saturation, unknown time-varying disturbances, and heavy computation. The no... ver más

 
Hang Yu, Yixi Zhao, Chongben Ni, Jinhong Ding, Tao Zhang, Ran Zhang and Xintian Jiang    
The diverse nature of hull components in shipbuilding has created a demand for intelligent robots capable of performing various tasks without pre-teaching or template-based programming. Visual perception of a target?s outline is crucial for path planning... ver más