Inicio  /  Hydrology  /  Vol: 9 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

An Integrated Hydrological Modelling Approach to Evaluate the Capacity of Keenjhar Lake by Using STELLA

Sadaf Sher    
Muhammad Waseem    
Muhammad Mohsin Waqas    
Khawar Rehman    
Muhammad Ilyas    
Hafiz Ahmed Waqas and Megersa Kebede Leta    

Resumen

Due to overexploitation and lower rainfall rates, it is essential to study the detailed water balance of the Keenjhar lake by considering the climate change impacts and higher water demands linked with the population growth. A hydrological model of Keenjhar Lake is developed based on a system dynamic approach using STELLA (Structural Thinking and Experiential Learning Laboratory with Animation). The model (STELLA) developed in the current research study comprises the following three sub-systems: population, water supply, and water demand. The hydrological and climate data for the period of seventeen years (2000?2016) is used in the current study. The monthly water budget of the Keenjhar Lake is determined by inflow components such as rainfall and the Kalri-Baghar Feeder (K.B.F) (upper) and outflow components such as evaporation, the K.B. Feeder (lower), and the Keenjhar-Gujju (K.G) canal from the lake. The water balance results revealed that the contribution of direct rainfall and the annual inflow components to the lake are 22.03% and 77.91%, respectively. Whereas the evaporation, outflow to K.B.F lower and water abstraction to the K.G. Canal constituted about 5.78%, 92.55%, and 1.57% of the total annual outflow from the lake, respectively. Moreover, the annual inflow components of the water budget of the lake showed a declining trend while the outflow components (water abstraction) intimated an increasing trend. The study results also acknowledged that the demand for water can increase from 3 × 1010 ft3/yr up to 1.2 × 1011 ft3/yr by the year 2050 (influence of overdrawing of water due to population growth), and water supply may decrease to 9.066 × 1010 ft3 (rainfall depletion due to climate change). A detailed water balance explains the main water loss components and will help in developing better water management practices and well-informed policy decisions.

 Artículos similares

       
 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Toshiharu Kojima, Ryoma Shimono, Takahiro Ota, Hiroshi Hashimoto and Yasuhiro Hasegawa    
The ecosystem services of forests, such as the water conservation function, are the combined results of diverse processes, and the modification of one part of a forest affects each ecosystem service separately via complex processes. It is necessary to de... ver más
Revista: Water

 
Davide Fronzi, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini and Alberto Tazioli    
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at var... ver más
Revista: Water

 
Anna Rita Bernadette Cammerino, Michela Ingaramo and Massimo Monteleone    
The European Parliament has recently passed the ?Nature Recovery? law to restore degraded ecosystems and prevent natural disasters as part of its ?Biodiversity Strategy 2030? and ?Green Deal?. In this respect, wetlands can provide a wide range of ecosyst... ver más
Revista: Water