ARTÍCULO
TITULO

Dynamic Response of Multiconnected Floating Solar Panel Systems with Vertical Cylinders

Jihun Song    
Joonseob Kim    
Jeonghwa Lee    
Seungjun Kim and Woochul Chung    

Resumen

In this study, the dynamic response of a multiconnected floating solar panel system with a vertical pontoon were studied under various scenarios. First, a floating solar panel pontoon is modeled by combining nine single-unit vertical cylinders (arranged in parallel, horizontally and vertically, 3 m apart from each other). Each cylinder will be considered a rigid body, and they are connected to each other with a frame, so that they can oscillate together. Each floating solar panel pontoon was connected to a steel pipe, and a hinged connector was attached to the connecting point of each steel pipe, while it was fixed at each pontoon. In this study, as a floating solar panel system, a 10 × 10 system was adopted at a water depth of 50 m. Furthermore, a catenary mooring system with steel wire rope was installed to enhance its station-keeping capability. As an environmental load, wave excitation force, under normal operating and extreme conditions, was considered. To confirm the dynamic behavior of the system, a connector boundary condition sensitivity test was conducted under a 0° heading (west to east). It has been proven that an unexpected dynamic response along the sway, roll, and yaw directions is observed in the hinged connector case, due to the second generated moment caused by the movement of the facilities. Furthermore, judging from extreme simulation results, the larger the external environmental loading, the greater the dynamic response of the system, due to amplified wave excitation forces. Finally, under the multiple mooring line failure scenario, the dynamic response of the system is significantly amplified, due to the loss of mooring tension, except for the roll response.

 Artículos similares

       
 
Chengfei Tao, Rongyue Sun, Yichen Wang, Yang Gao, Lin Meng, Liangbao Jiao, Shaohua Liang and Ling Chen    
This study experimentally explored the effects of equivalence ratio settings on ethanol fuel combustion oscillations with a laboratory-scale combustor. A contrary flame equivalence ratio adjusting trend was selected to investigate the dynamic characteris... ver más
Revista: Aerospace

 
Yibei Guo, Yijiang Pang, Joseph Lyons, Michael Lewis, Katia Sycara and Rui Liu    
Due to the complexity of real-world deployments, a robot swarm is required to dynamically respond to tasks such as tracking multiple vehicles and continuously searching for victims. Frequent task assignments eliminate the need for system calibration time... ver más
Revista: AI

 
Jianwei Yang, Changdong Liu, Peishan Liu and Yue Zhao    
Cracks are one of the most common diseases of tunnel lining, and the structural dynamic response can be used to assess the health of a tunnel. Hence, this paper investigates the dynamic response of shield tunnel lining with a partly circumferential crack... ver más
Revista: Applied Sciences

 
Jianguo Zhao, Yang Yu, Hao Xu, Rongtang Zhang, Yuxi Ma and Jialiang Li    
Numerical seismic wave field simulation is essential for studying the dynamic responses in semi-infinite space, and the absorbing boundary setting is critical for simulation accuracy. This study addresses spherical waves incident from the free boundary b... ver más
Revista: Applied Sciences

 
Yuan Wei, Renliang Chen, Ye Yuan and Luofeng Wang    
This study assesses the influence of engine dynamic characteristics on helicopter handling quality during hover and low-speed forward flight. First, we construct the helicopter?engine coupling model (HECM) based on the power-matching relationship between... ver más
Revista: Aerospace