ARTÍCULO
TITULO

Performance Evaluation of Seawalls in Mitigating a Real-World Tsunami Wave Using a Nonhydrostatic Numerical Wave Model

J. X. Huang    
K. Qu    
X. H. Li and G. Y. Lan    

Resumen

In the past few decades, huge surges and waves generated during tsunami events have caused devastating destruction to both onshore and offshore infrastructures, seriously threatening the safety and intactness of coastal communities around the world. As one of the most important coastal protection infrastructures, a seawall can effectively reduce the impact intensity of surges and waves, thus playing a vital role in protecting coastal regions. Most previous studies have systematically investigated the hydrodynamic characteristics of seawalls under the action of regular and irregular waves. Meanwhile, solitary wave models are often used as the wave model for tsunamis. However, vast hydrodynamic differences exist between solitary wave models and real-world tsunamis in terms of both wave profile and wave period. Hence, our understanding of the performance of seawalls in mitigating the damaging power of real-world tsunamis is still insufficient. Hence, it is of great significance to systematically study the performance of seawalls in mitigating the huge surges and waves generated during real-world tsunamis. In comparison to previous research, where the wave profiles of solitary waves were used as tsunami wave models, a parameterized tsunami-like wave based on the recorded wave profile of the 2011 Japan tsunami is applied in this study to evaluate the performance of different seawalls in mitigating tsunami surges and waves by using a nonhydrostatic numerical wave model (NHWAVE). The effects of the prominent factors, such as incident wave height, still water depth, beach slope, and the side slope of the seawall, on the hydrodynamics of the seawall are systematically discussed. It is believed that the research findings drawn from this study can further broaden our understanding of the performance of seawalls in mitigating tsunamis.

 Artículos similares

       
 
Julien Touboul, Veronica Morales-Marquez and Kostas Belibassakis    
The wave?current?seabed interaction problem is studied by using a coupled-mode system developed for modeling wave scattering by non-homogeneous, sheared currents in variable bathymetry regions. The model is based on a modal series expansion of wave veloc... ver más

 
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water

 
Achilleas G. Samaras and Theophanis V. Karambas    
This work presents a new model for surf and swash zone morphology evolution induced by nonlinear waves. Wave transformation in the surf and swash zones is computed by a nonlinear wave model based on the higher order Boussinesq equations for breaking and ... ver más

 
Kichul Kim, Seongmin Pyo and Jinwoo Jung    
With increasing interest in the W-band, there is growing focus on parabolic reflector antennas that are known for efficiently inducing high-gain radiation characteristics. There is particular focus on parabolic antennas with diverse defocus-fed applicati... ver más
Revista: Applied Sciences

 
Xiaoyan Shi, Fuming Yang, Enzhu Hou and Zhongzhu Liang    
Metalenses, with their unique modulation of light, are in great demand for many potential applications. As a proof-of-principle demonstration, we focus on designing SiO2 metalenses that operate in the deep ultraviolet region, specifically around 193 nm. ... ver más
Revista: Applied Sciences