Inicio  /  Buildings  /  Vol: 13 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

A Study of the Mechanical Properties of Polyester Fiber Concrete Continuous Rigid Frame Bridge during Construction

Shouju Miao    
Xiaojian Zhan    
Yangbing Yuan and Lijun Jia    

Resumen

This study investigates the mechanical performance of a polyester fiber concrete continuous rigid frame bridge during construction and the spatial stress distribution of the 0# block box girder, with a focus on the backdrop of the bridge in Pipa Zhou, Jiangxi Province. Stress monitoring at critical cross-sections during bridge construction was combined with FE simulations to analyze the stress and alignment deviation variations along the cantilevered construction process of the bridges. Subsequently, after validating the accuracy of the whole bridge model, the actual internal force of the box girder cross-section was extracted to act on the 0# block box girder solid model, and the spatial force of the 0# block box girder under the state of maximal cantilever and the completed bridge was further investigated. The results indicate that during cantilever construction, the top, and bottom plates of the box girder were subjected to compression, with the bottom plates having relatively low compression stress close to the critical values for compression and tension. Attention should be paid to controlling tensile stress application. After reaching a quarter of the bridge?s span in construction, the alignment deviation of the main beam increases, necessitating enhanced monitoring and adjustments of the main beam elevation. Furthermore, FE analysis shows that under maximum cantilever and the completed bridge states, the stress variations of the top and bottom plates of the 0# block box girder remain consistent, with the top plate stress varying by no more than 2.5 MPa and the bottom plate stress varying by approximately 1 MPa. Moreover, the 0# block box girder shrinkage cracks were mainly located in the bottom and web plate, and the number of cracks in the 0# block box girder with polyester fibers was reduced compared to the cracks in the ordinary concrete box girder.

 Artículos similares

       
 
Vivek Sharma, Carlos H. Caldas, Dhaval Gajjar and Prajakta Bapat    
Healthcare facilities (HCFs) are complex building structures that are becoming more challenging with ever-changing codes and regulations. Previously completed projects become a basis for future guidance regarding costs and scope. A robust normalization f... ver más
Revista: Buildings

 
Kai Li, Quan Liu, Yuan Tian, Cong Du and Zhixiang Xu    
Asphalt mixtures exhibit complex mechanical behaviors due to their multiphase internal structures. To provide better characterizations of asphalt pavements under various forms of potential distress, a two-dimensional (2D) finite element simulation based ... ver más
Revista: Buildings

 
Wahhaj Ahmed, Baqer Al-Ramadan, Muhammad Asif and Zulfikar Adamu    
Energy and environmental challenges are a major concern across the world and the urban residential building sector, being one of the main stakeholders in energy consumption and greenhouse gas emissions, needs to be more energy efficient and reduce carbon... ver más
Revista: Buildings

 
Jing Liu, Tao Zhang, Zhicheng Pan and Fanjun Ma    
Concrete-filled round-ended steel tubes (CFRTs) are a unique type of composite stub columns, which have the advantage of aesthetics and a well-distributed major?minor axis. Thus, the structure has been widely employed as piers and columns in bridges. To ... ver más
Revista: Buildings

 
Yingwei Liang, Assaad Taoum, Nathan Kotlarewski, Andrew Chan and Damien Holloway    
The mechanical properties of fibre-managed Eucalyptus nitens (E. nitens) cross-laminated timber (CLT) have previously been extensively studied, proving the material to be structurally safe and reliable. However, the vibration performance of CLT manufactu... ver más
Revista: Buildings