ARTÍCULO
TITULO

Finite Element Analysis and Parametric Study of Spudcan Footing Geometries Penetrating Clay Near Existing Footprints

Long Yu    
Heyue Zhang    
Jing Li and Xian Wang    

Resumen

Most existing research on the stability of spudcans during reinstallation nearing footprints is based on centrifuge tests and theoretical analyses. In this study, the reinstallation of the flat base footing, fusimform spudcan footing and skirted footing near existing footprints are simulated using the coupled Eulerian?Lagrangian (CEL) method. The effects of footprints? geometry, reinstallation eccentricity (0.25D?2.0D) and the roughness between spudcan and soil on the profiles of the vertical force, horizontal force and bending moment are discussed. The results show that the friction condition of the soil?footing interface has a significant effect on H profile but much less effect on M profile. The eccentricity ratio is a key factor to evaluate the H and M. The results show that the geometry shape of the footing also has certain effects on the V, H, and M profiles. The flat base footing gives the lowest peak value in H but largest in M, and the performances of the fusiform spudcan footing and the skirted footing are similar. From the view of the resultant forces, the skirted footing shows a certain potential in resisting the damage during reinstallation near existing footprints by comparing with commonly used fusiform spudcan footings. The bending moments on the leg?hull connection section of different leg length at certain offset distances are discussed.

 Artículos similares

       
 
Cesare Patuelli, Enrico Cestino and Giacomo Frulla    
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior ... ver más
Revista: Aerospace

 
Zhuopu Wang, Kairui Yu and Yuanzhe Liu    
The unsteady combustion of solid propellants under oscillating environments is the key to understanding the combustion instability inside solid rocket motors. The discontinuous Galerkin?finite element method (DG-FEM) is introduced to provide an efficient... ver más
Revista: Aerospace

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Chunyun Shen, Genpei Li, Zhongxu Tian, Chang Chen and You Zhou    
The torsional stiffness parameter significantly influences the natural frequency of a leaf spring torsional vibration damper and its proper match with a diesel engine, and the nonlinear characteristics of torsional stiffness avoid reduced reliability due... ver más
Revista: Applied Sciences

 
Jun Wu, Wen Wang, Minghui Lu and Yu Hu    
A metal fatigue damage model is established in this study by employing real-time strain monitoring to evaluate the damage state of metal materials. The fatigue life simulation, based on crystal plasticity finite element analysis, establishes the constitu... ver más
Revista: Applied Sciences