Inicio  /  Applied Sciences  /  Vol: 10 Par: 9 (2020)  /  Artículo
ARTÍCULO
TITULO

An Integrated System of Artificial Intelligence and Signal Processing Techniques for the Sorting and Grading of Nuts

Morteza Farhadi    
Yousef Abbaspour-Gilandeh    
Asghar Mahmoudi and Joe Mari Maja    

Resumen

The existence of conversion industries to sort and grade hazelnuts with modern technology plays a vital role in export. Since most of the hazelnuts produced in Iran are exported to domestic and foreign markets without sorting and grading, it is necessary to have a well-functioning smart system to create added value, reduce waste, increase shelf life, and provide a better product delivery. In this study, a method is introduced to sort and grade hazelnuts by integrating audio signal processing and artificial neural network techniques. A system was designed and developed in which the produced sound, due to the collision of the hazelnut with a steel disk, was taken by the microphone placed under the steel disk and transferred to a PC via a sound card. Then, it was stored and processed by a program written in MATLAB software. A piezoelectric sensor and a circuit were used to eliminate additional ambient noise. The time-domain and wavelet domain features of the data were extracted using MATLAB software and were analyzed using Artificial Neural Network Toolbox. Seventy percent of the extracted data signals were used for training, 15% for validation, and the rest of the data was used to test the artificial neural network (Multilayer Perceptron network with Levenberg-Marquardt Learning algorithm). The model optimization and the number of neurons in the hidden layer were conducted based on mean square error (MSE) and prediction accuracy (PA). A total of 2400 hazelnuts were used to evaluate the system. The optimal neural network structure for sorting and grading hazelnuts was 4-21-3 (four neurons in input layers, 21 neurons in the hidden layer, and three outputs which are the desired classification). This neural network (NN) was used to classify hazelnut as big, small, hollow, or damaged. Results showed 96.1%, 89.3%, and 93.1% accuracy for big/small, hollow, or damaged hazelnuts were obtained, respectively.

 Artículos similares

       
 
Tiankai Yang, Zhenzhong Sun, Yongliang Liang and Lichuan Liu    
With the rapid development of global trade, a large number of goods and resources are imported and exported via seaports. Multiple thermal loads and renewable energy merge into seaports, making the energy supply and demand structure increasingly complex.... ver más

 
Alireza Kakoee, Jacek Hunicz and Maciej Mikulski    
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression igniti... ver más

 
Taehoon Lee, Byungjin Lee and Sangkyung Sung    
This study proposes an enhanced integration algorithm that combines the magnetic field-based positioning system (MPS?Magnetic Pose Estimation System) with an inertial system with the advantage of an invariant filter structure. Specifically, to mitigate t... ver más
Revista: Aerospace

 
Jianhua Gao, Su Zhou, Yanda Lu and Wei Shen    
The multi-stack fuel cell system proposed in this paper can be applied to high-power generation, transport, and other engineering fields.
Revista: Applied Sciences

 
Hanwen Yu, Guiyuan Zheng, Yandong Liu, Jiajia Zhao, Guozhao Wei and Hongkui Jiang    
The potential applications of the dual linear-motor differential-drive system and the numerical analysis results are applicable to high-end equipment fields like suspensions, robotics, optoelectronics, powertrain, integrated electronics, national defense... ver más
Revista: Applied Sciences