Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Word Sense Disambiguation Using Cosine Similarity Collaborates with Word2vec and WordNet

Korawit Orkphol and Wu Yang    

Resumen

Words have different meanings (i.e., senses) depending on the context. Disambiguating the correct sense is important and a challenging task for natural language processing. An intuitive way is to select the highest similarity between the context and sense definitions provided by a large lexical database of English, WordNet. In this database, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms interlinked through conceptual semantics and lexicon relations. Traditional unsupervised approaches compute similarity by counting overlapping words between the context and sense definitions which must match exactly. Similarity should compute based on how words are related rather than overlapping by representing the context and sense definitions on a vector space model and analyzing distributional semantic relationships among them using latent semantic analysis (LSA). When a corpus of text becomes more massive, LSA consumes much more memory and is not flexible to train a huge corpus of text. A word-embedding approach has an advantage in this issue. Word2vec is a popular word-embedding approach that represents words on a fix-sized vector space model through either the skip-gram or continuous bag-of-words (CBOW) model. Word2vec is also effectively capturing semantic and syntactic word similarities from a huge corpus of text better than LSA. Our method used Word2vec to construct a context sentence vector, and sense definition vectors then give each word sense a score using cosine similarity to compute the similarity between those sentence vectors. The sense definition also expanded with sense relations retrieved from WordNet. If the score is not higher than a specific threshold, the score will be combined with the probability of that sense distribution learned from a large sense-tagged corpus, SEMCOR. The possible answer senses can be obtained from high scores. Our method shows that the result (50.9% or 48.7% without the probability of sense distribution) is higher than the baselines (i.e., original, simplified, adapted and LSA Lesk) and outperforms many unsupervised systems participating in the SENSEVAL-3 English lexical sample task.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Vinto Gujjar, Neeru Mago, Raj Kumari, Shrikant Patel, Nalini Chintalapudi and Gopi Battineni    
Word sense disambiguation (WSD) is a process used to determine the most appropriate meaning of a word in a given contextual framework, particularly when the word is ambiguous. While WSD has been extensively studied for English, it remains a challenging p... ver más
Revista: Information
Tajana Ban Kirigin, Sanda Bujacic Babic and Benedikt Perak    
We present a graph-based method for the lexical task of labeling senses of polysemous lexemes. The labeling task aims at generalizing sense features of a lexical item in a corpus using more abstract concepts. In this method, a coordination dependency-bas... ver más
Revista: Future Internet
Ahmed Aliwy, Ayad Abbas and Ahmed Alkhayyat    
An information retrieval (IR) system is the core of many applications, including digital library management systems (DLMS). The IR-based DLMS depends on either the title with keywords or content as symbolic strings. In contrast, it ignores the meaning of... ver más
Christos Makris, Georgios Pispirigos and Michael Angelos Simos    
Text annotation is the process of identifying the sense of a textual segment within a given context to a corresponding entity on a concept ontology. As the bag of words paradigm?s limitations become increasingly discernible in modern applications, severa... ver más
Revista: Algorithms
Attaporn Wangpoonsarp, Kazuya Shimura and Fumiyo Fukumoto    
This paper focuses on the domain-specific senses of words and proposes a method for detecting predominant sense depending on each domain. Our Domain-Specific Senses (DSS) model is an unsupervised manner and detects predominant senses in each domain. We a... ver más
Revista: Applied Sciences