Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Addressing Syntax-Based Semantic Complementation: Incorporating Entity and Soft Dependency Constraints into Metonymy Resolution

Siyuan Du and Hao Wang    

Resumen

State-of-the-art methods for metonymy resolution (MR) consider the sentential context by modeling the entire sentence. However, entity representation, or syntactic structure that are informative may be beneficial for identifying metonymy. Other approaches only using deep neural network fail to capture such information. To leverage both entity and syntax constraints, this paper proposes a robust model EBAGCN for metonymy resolution. First, this work extracts syntactic dependency relations under the guidance of syntactic knowledge. Then the work constructs a neural network to incorporate both entity representation and syntactic structure into better resolution representations. In this way, the proposed model alleviates the impact of noisy information from entire sentences and breaks the limit of performance on the complicated texts. Experiments on the SemEval and ReLocaR dataset show that the proposed model significantly outperforms the state-of-the-art method BERT by more than 4%. Ablation tests demonstrate that leveraging these two types of constraints benefits fine pre-trained language models in the MR task.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Shuiyan Li, Rongzhi Qi and Shengnan Zhang    
Compared with English named entity recognition (NER), Chinese NER faces significant challenges due to the flexible, non-standard word formation and vague word boundaries, which cause a lot of boundary ambiguity and reduce the accuracy of entity identific... ver más
Revista: Applied Sciences
Yifei Wang, Yongwei Wang, Hao Hu, Shengnan Zhou and Qinwu Wang    
In order to solve the current problems in domain long text classification tasks, namely, the long length of a document, which makes it difficult for the model to capture key information, and the lack of expert domain knowledge, which leads to insufficien... ver más
Revista: Applied Sciences
Dong Xu, Ruping Ge and Zhihua Niu    
A state-of-the-art entity recognition system relies on deep learning under data-driven conditions. In this paper, we combine deep learning with linguistic features and propose the long short-term memory-conditional random field model (LSTM-CRF model) wit... ver más
Revista: Future Internet
Jaskaran Gill, Madhu Chetty, Suryani Lim and Jennifer Hallinan    
Relation extraction from biological publications plays a pivotal role in accelerating scientific discovery and advancing medical research. While vast amounts of this knowledge is stored within the published literature, extracting it manually from this co... ver más
Revista: Informatics