ARTÍCULO
TITULO

Motion Planning for an Unmanned Surface Vehicle with Wind and Current Effects

Shangding Gu    
Chunhui Zhou    
Yuanqiao Wen    
Changshi Xiao and Alois Knoll    

Resumen

Aiming at the problem that unmanned surface vehicle (USV) motion planning is disturbed by effects of wind and current, a USV motion planning method based on regularization-trajectory cells is proposed. First, a USV motion mathematical model is established while considering the influence of wind and current, and the motion trajectory is analyzed. Second, a regularization-trajectory cell library under the influence of wind and current is constructed, and the influence of wind and current on the weight of the search cost is analyzed. Finally, derived from the regularization-trajectory cell and the search algorithm, a motion planning method for a USV that considers wind and current effects is provided. The experimental results indicate that the motion planning is closer to the actual trajectory of a USV in complex environments and that our method is highly practicable.

 Artículos similares

       
 
Rongke Wei, Haodong Pei, Dongjie Wu, Changwen Zeng, Xin Ai and Huixian Duan    
The task of 3D reconstruction of urban targets holds pivotal importance for various applications, including autonomous driving, digital twin technology, and urban planning and development. The intricate nature of urban landscapes presents substantial cha... ver más
Revista: Applied Sciences

 
Xiaonan Wang, Yang Guo and Yuan Gao    
Non-terrestrial network (NTN) is a trending topic in the field of communication, as it shows promise for scenarios in which terrestrial infrastructure is unavailable. Unmanned autonomous intelligent systems (UAISs), as a physical form of artificial intel... ver más
Revista: Information

 
Beom-Joon Park and Hyun-Joon Chung    
The growing trend of onboard computational autonomy has increased the need for self-reliant rovers (SRRs) with high efficiency for unmanned rover activities. Mobility is directly associated with a successful execution mission, thus fault response for act... ver más
Revista: Aerospace

 
Yu Han, Xiaolei Ma, Bo Wang, Hongwang Zhang, Qiuxia Zhang and Gang Chen    
Nonlinear Model Predictive Control (NMPC) is an effective approach for motion planning in autonomous vehicles that need to satisfy multiple driving demands. Within the realm of planner design, current strategies inadequately address the issues related to... ver más
Revista: Applied Sciences

 
Xi Lyu, Yushan Sun, Lifeng Wang, Jiehui Tan and Liwen Zhang    
This study aims to solve the problems of sparse reward, single policy, and poor environmental adaptability in the local motion planning task of autonomous underwater vehicles (AUVs). We propose a two-layer deep deterministic policy gradient algorithm-bas... ver más