Resumen
With the rapid development of global trade, the turnover of shipping containers has increased rapidly. How to use port resources reasonably and efficiently has become one of the main challenges that ports need to deal with when planning for the future. In order to develop scientific and efficient berth plans to improve operational efficiency and service level, this paper proposes a hybrid prediction model based on Principal Component Analysis (PCA) and Extreme Learning Machine (ELM) optimized by Improved Particle Swarm Optimization (IPSO), namely, the PCA-IPSO-ELM model. After assessing the uncertain factors influencing the operation time of the container ship at berth, this work reduces the dimensionality of the investigational data by the PCA method. Aiming to solve easy premature convergence of the traditional particle swarm algorithm, this paper introduces an improved particle swarm optimization algorithm via dynamic adjustment of nonlinear parameters. This improved particle swarm algorithm is mainly used to optimize the weights and thresholds of the extreme learning machine. Thus, a PCA-IPSO-ELM model which aims to forecast the operation time of a container ship at berth, is constructed. Using the historical operation data of the Tianjin Port Container Shipping Company as the prediction sample, this PCA-IPSO-ELM model is compared and assessed with traditional models. The results show that compared with other models, the PCA-IPSO-ELM prediction model has the characteristics of high prediction accuracy, fast running rate and strong stability, and it has a higher coefficient of determination and a better fitting degree.