Inicio  /  Agriculture  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Biomechanical Characterization of Bionic Mechanical Harvesting of Tea Buds

Kun Luo    
Zhengmin Wu    
Chengmao Cao    
Kuan Qin    
Xuechen Zhang and Minhui An    

Resumen

To date, mechanized picking of famous tea (bud, one bud one leaf) causes a lot of damage. Manual picking results in high-quality tea but the process is inefficient. Therefore, in order to improve the quality of mechanically harvested tea buds, the study of bionic picking is beneficial to reduce the damage rate of mechanical picking. In this paper, the manual flexible picking process is studied, and a bionic bladeless mechanical picking mechanics model is developed. The relationship between the mechanical properties and structural deformation of tea stalks is obtained by microstructural observation and mechanical experimental analysis and determination of the bud bionic picking mechanics flow by combined loading tests is carried out. The results show that the key factor for low damage in tea picking is the precise flexible force applied to different parts of the shoot tip during pinching, upward, and picking. The biological force of tea stalks is closely related to the stalk diameter and maturity of stalk tissue development. The larger the xylem of the tea stalk, the stronger its resistance to bending, stretching, and deformation. The stalks at the tender end of the tea are more resilient than the lower stalks and will not break under the action of large angle bending. Additionally, the stalks at the shoot tip have significantly lower pull-off force than the stalks at other places. By simulating the manual picking process, the mechanical picking mechanical parameters were determined to be a clamping pressure of 340 kPa, bending force of 0.134 N, and pull-off force of 5.1 N. These findings help the design of low-damage pickers for famous tea and provide a reference for low-damage bionic picking of tea.

 Artículos similares