ARTÍCULO
TITULO

The Use of Animal-Borne Biologging and Telemetry Data to Quantify Spatial Overlap of Wildlife with Marine Renewables

Natalie Isaksson    
Ian R. Cleasby    
Ellie Owen    
Benjamin J. Williamson    
Jonathan D. R. Houghton    
Jared Wilson and Elizabeth A. Masden    

Resumen

The growth of the marine renewable energy sector requires the potential effects on marine wildlife to be considered carefully. For this purpose, utilization distributions derived from animal-borne biologging and telemetry data provide accurate information on individual space use. The degree of spatial overlap between potentially vulnerable wildlife such as seabirds and development areas can subsequently be quantified and incorporated into impact assessments and siting decisions. While rich in information, processing and analyses of animal-borne tracking data are often not trivial. There is therefore a need for straightforward and reproducible workflows for this technique to be useful to marine renewables stakeholders. The aim of this study was to develop an analysis workflow to extract utilization distributions from animal-borne biologging and telemetry data explicitly for use in assessment of animal spatial overlap with marine renewable energy development areas. We applied the method to European shags (Phalacrocorax aristotelis) in relation to tidal stream turbines. While shag occurrence in the tidal development area was high (99.4%), there was no overlap (0.14%) with the smaller tidal lease sites within the development area. The method can be applied to any animal-borne bio-tracking datasets and is relevant to stakeholders aiming to quantify environmental effects of marine renewables.