Inicio  /  Applied Sciences  /  Vol: 14 Par: 6 (2024)  /  Artículo
ARTÍCULO
TITULO

Remote Sensing Image Segmentation for Aircraft Recognition Using U-Net as Deep Learning Architecture

Fadi Shaar    
Arif Yilmaz    
Ahmet Ercan Topcu and Yehia Ibrahim Alzoubi    

Resumen

Recognizing aircraft automatically by using satellite images has different applications in both the civil and military sectors. However, due to the complexity and variety of the foreground and background of the analyzed images, it remains challenging to obtain a suitable representation of aircraft for identification. Many studies and solutions have been presented in the literature, but only a few studies have suggested handling the issue using semantic image segmentation techniques due to the lack of publicly labeled datasets. With the advancement of CNNs, researchers have presented some CNN architectures, such as U-Net, which has the ability to obtain very good performance using a small training dataset. The U-Net architecture has received much attention for segmenting 2D and 3D biomedical images and has been recognized to be highly successful for pixel-wise satellite image classification. In this paper, we propose a binary image segmentation model to recognize aircraft by exploiting and adopting the U-Net architecture for remote sensing satellite images. The proposed model does not require a significant amount of labeled data and alleviates the need for manual aircraft feature extraction. The public dense labeling remote sensing dataset is used to perform the experiments and measure the robustness and performance of the proposed model. The mean IoU and pixel accuracy are adopted as metrics to assess the obtained results. The results in the testing dataset indicate that the proposed model can achieve a 95.08% mean IoU and a pixel accuracy of 98.24%.

Palabras claves

 Artículos similares

       
 
Zhou Fang, Xiaoyong Wang, Liang Zhang and Bo Jiang    
Currently, deep learning is extensively utilized for ship target detection; however, achieving accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the diverse scenes, varied scales, and complex backgrounds... ver más

 
Sai Wang, Guoping Fu, Yongduo Song, Jing Wen, Tuanqi Guo, Hongjin Zhang and Tuantuan Wang    
The development of intelligent oceans requires exploration and an understanding of the various characteristics of the oceans. The emerging Internet of Underwater Things (IoUT) is an extension of the Internet of Things (IoT) to underwater environments, an... ver más

 
Defang Lu, Yuejun Zheng, Xianghui Cao, Jiaojiao Guan, Wenpeng Li and Kifayatullah Khan    
In recent decades, the water cycle process in the Loess Plateau has undergone drastic changes under the influence of anthropogenic disturbance and climate variability. The Loess Plateau has been greatly affected by human activities and climate change, an... ver más
Revista: Water

 
José Luis Hernández-Martínez, Jorge Adrián Perera-Burgos, Gilberto Acosta-González, Jesús Alvarado-Flores, Yanmei Li and Rosa María Leal-Bautista    
Remote sensing is an invaluable research tool for the analysis of marine and terrestrial water bodies. However, it has some technical limitations in waters with oligotrophic conditions or close to them due to the low spectral response of some water param... ver más
Revista: Water

 
Linhua Zhang, Ning Xiong, Wuyang Gao and Peng Wu    
With the exponential growth of remote sensing images in recent years, there has been a significant increase in demand for micro-target detection. Recently, effective detection methods for small targets have emerged; however, for micro-targets (even fewer... ver más
Revista: Information