Inicio  /  Water  /  Vol: 16 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Study on the Hydrodynamic Performance of Swing-Type Flapping Hydrofoil Bionic Pumps Affected by Foil Camber

Qizong Sun    
Ertian Hua    
Liying Sun    
Linfeng Qiu    
Yabo Song and Mingwang Xiang    

Resumen

The flapping hydrofoil bionic pump is an innovative hydrodynamic device that utilizes flapping hydrofoil technology. Flapping hydrofoil bionic pumps are crucial in addressing issues like inadequate river hydropower and limited water purification capabilities in flat river network regions. Optimizing the foil characteristics is essential for enhancing the hydrodynamic efficiency of the flapping hydrofoil bionic pump. This study investigates the impact of foil camber parameters on the hydrodynamic performance of swing-type asymmetric flapping bionic pumps. The NACA series standard foils with varying cambers are analyzed using the overlapping grid technology and finite volume method. The thrust coefficient, flow rate, pumping efficiency, and flow field structure of the flapping hydrofoil bionic pump are examined under pressure inlet conditions with the foil camber. The findings indicate that increasing the foil?s curvature within a specific range can greatly enhance the maximum values of thrust coefficient, propulsive efficiency, and pumping efficiency of the flapping hydrofoil bionic pump. Specifically, when the foil curvature is 6%c, the maximum value of the instantaneous thrust coefficient of the flapping hydrofoil bionic pump is significantly improved by 31.25% compared to the symmetric foil type under the condition of an oscillating frequency of f = 1 HZ. The flapping hydrofoil bionic pump achieves its maximum pumping efficiency when the oscillation frequency is within the range of f = 2.5 Hz. This efficiency is 11.7% greater than that of the symmetric foil, and it occurs when the foil curvature is 8%c. Within the frequency range of f > 2.5 Hz, the flapping hydrofoil bionic pump that has a foil curvature of 6%c exhibits the highest enhancement in pumping efficiency. It achieves a maximum increase of 12.8% compared to the symmetric foil type. Nevertheless, the average head was less than 0.4 m, making it suitable for ultra-low-head applications.

 Artículos similares

       
 
Dongjing Huang, Chuanchong Tian, Tao Xu, Zhen Liu, Hongyu Ma, Zexian Zhang and Xinsheng Dong    
In order to safeguard the ecological health of Changxinggang River?s water environment, conducting research on ecological discharge, including establishing reasonable ecological discharge control values, is of great importance. This study utilized monthl... ver más
Revista: Water

 
Zhen Xu, Lianjiang Xu, Junfeng Sun, Meihong Liu, Taohong Liao and Xiangping Hu    
Flexible support cylindrical gas film seals (CGFSs) adapt well to rotor whirling and have a good gas lubrication effect during thermal deformation. However, when a CGFS operates under the ?three high? (high interface slip speed, high-pressure differentia... ver más
Revista: Aerospace

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Li Pan, Guoying Wu, Mingwu Zhang, Yuan Zhang, Zhongmei Wang and Zhiqiang Lai    
The functionality of rivers and open diversion channels can be severely impacted when the epipelic algae group that grows on concrete inclined side walls, which are typical of urban rivers, joins the water flow. This study aims to increase the long-dista... ver más
Revista: Water