ARTÍCULO
TITULO

Assessment Method Based on AIS Data Combining the Velocity Obstacle Method and Pareto Selection for the Collision Risk of Inland Ships

Yan Wang    
Yi Zhang    
Hengchao Zhao and Hongbo Wang    

Resumen

A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared with open waters, the inland waterway has a larger density of ships, and the land and water environments are complex. The existing risk assessment models lack adaptability under the conditions of inland navigation. Therefore, this paper proposes a real-time collision risk assessment method for ships navigating inland rivers. This method utilizes the information of ships? size in the automatic identification system (AIS) to construct the velocity obstacle cone between convex polygonal targets using the velocity obstacle method. Then, according to the geometric relationship between the relative velocity of two targets and the velocity obstacle cone, a new collision risk assessment model is defined. This model defines two indicators to evaluate the navigation collision risk: the degree of velocity obstacle intrusion (DVOI) and time of velocity obstacle intrusion (TVOI). These two indicators assess the risk of collision, respectively, from two aspects speed and course. In addition, a method using a trajectory compression algorithm to screen collision avoidance operation points in ship AIS trajectory is proposed to screen collision avoidance scenarios in the Yangtze River waterway. The effectiveness of the proposed collision risk model is verified in course-keeping and collision avoidance scenarios and compared with the traditional closest point of approach (CPA) method. The results indicate that the evaluation model for collision risk assessment is more accurate than the CPA method in all scenarios. Finally, this paper uses the Pareto selection algorithm to combine DVOI and TVOI, which can identify the ship that poses the greatest risk to our ship.

 Artículos similares

       
 
Pietro Vivalda and Marco Fioriti    
The growing environmental public awareness and the consequential pressure on every industrial field has made environmental impact assessment increasingly important in the last few years. In this scope, the most established tool used in the specialized li... ver más
Revista: Aerospace

 
Junrong Wang, Chunlei He, Dianfu Fu, Kuang He and Junfeng Du    
Fatigue failure caused by frequent tension and bending loads is a crucial safety concern for mooring chains used on floating structures in the oil and gas industry. The bending effect for a chain?s fatigue is usually not considered by existing fatigue an... ver más

 
Tiankai Yang, Zhenzhong Sun, Yongliang Liang and Lichuan Liu    
With the rapid development of global trade, a large number of goods and resources are imported and exported via seaports. Multiple thermal loads and renewable energy merge into seaports, making the energy supply and demand structure increasingly complex.... ver más

 
Wen Tian, Xuefang Zhou, Jianan Yin, Yuchen Li and Yining Zhang    
The complex layout of the airport surface, coupled with interrelated vehicle behaviors and densely mixed traffic flows, frequently leads to operational conflict risks. To address this issue, research was conducted on the recognition of characteristics an... ver más
Revista: Aerospace

 
Suliman Ali Al-Khateeb, Faisal Ibrahim Zeineldin, Nagat Ahmed Elmulthum, Khalid Mohammed Al-Barrak, Muhammad Naeem Sattar, Tagelsir Ahmed Mohammad and Akbar S. Mohmand    
Water scarcity has necessitated the adoption of water-saving techniques in both protected and non-protected farming. This study aimed to evaluate the performance of a water-saving soilless cultivation technique and compare it to conventional soil-based c... ver más
Revista: Water