ARTÍCULO
TITULO

Numerical Simulation of Depth Tracking Control of an Underwater Towed System Coupled with Wave?Ship Interference

Xianyuan Yang    
Jiaming Wu    
Quanlin Li and Haiyan Lv    

Resumen

This paper presents a numerical study of the depth tracking control for an underwater towed system under wave?ship interference condition. To overcome the laminations of ignoring the hydrodynamic factors and wave?ship interference in the existing simulation model for the depth tracking operation of the underwater towed system, a numerical model combining the control system with the computational fluid dynamics (CFD) method based on the overset mesh technique is explored and constructed; the influence of towing ship and head waves is introduced into the numerical analysis of the underwater towed system; a depth control system based on the center of gravity adjustment is proposed and its control characteristics are discussed. The fluid motion around the towed vehicle and the towing ship is governed by the Navier?Stokes equations, and the overset mesh technique is applied for the numerical solution of the equations. The towing cable connecting the towed vehicle and towing ship is governed by the quasi-steady-state catenary equations. The depth tracking controller adjusting the longitudinal position of a shifting weight is constructed based on the proportional?integral?derivative (PID) algorithm. The simulation results show that the numerical simulation system is practicable, and the depth tracking control system is feasible, effective, and robust.

 Artículos similares

       
 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Fei Gao, Yu Zhang, Chang Chen, Xiaosen Li and Zhaoyang Chen    
The effectiveness of horizontal well drilling in improving the gas recovery efficiency of hydrate production makes it a promising technology for commercial exploitation. However, during horizontal well drilling in hydrate reservoirs, it is crucial to con... ver más

 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más

 
Tao Wang, Yu Xiang, Liyuan Liu and Wang Xiong    
Relying on the Mawan undersea large-diameter, dual-line, mud?water-balanced shield tunnel project and focusing on the characteristics of the tunnel, such as the complex geological conditions at the expected intersection location and the existence of a su... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más