Inicio  /  Applied Sciences  /  Vol: 12 Par: 14 (2022)  /  Artículo
ARTÍCULO
TITULO

A Novel Method for Fault Diagnosis of Bearings with Small and Imbalanced Data Based on Generative Adversarial Networks

Qingbin Tong    
Feiyu Lu    
Ziwei Feng    
Qingzhu Wan    
Guoping An    
Junci Cao and Tao Guo    

Resumen

The data-driven intelligent fault diagnosis method of rolling bearings has strict requirements regarding the number and balance of fault samples. However, in practical engineering application scenarios, mechanical equipment is usually in a normal state, and small and imbalanced (S & I) fault samples are common, which seriously reduces the accuracy and stability of the fault diagnosis model. To solve this problem, an auxiliary classifier generative adversarial network with spectral normalization (ACGAN-SN) is proposed in this paper. First, a generation module based on a deconvolution layer is built to generate false data from Gaussian noise. Second, to enhance the training stability of the model, the data label information is used to make label constraints on the generated fake data under the basic GAN framework. Spectral normalization constraints are imposed on the output of each layer of the neural network of the discriminator to realize the Lipschitz continuity condition so as to avoid vanishing or exploding gradients. Finally, based on the generated data and the original S & I dataset, seven kinds of bearing fault datasets are made, and the prediction results of the Bi-directional Long Short-Term Memory (BiLSTM) model is verified. The results show that the data generated by ACGAN-SN can significantly promote the performance of the fault diagnosis model under the S & I fault samples.

 Artículos similares

       
 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Hang Yu, Yixi Zhao, Chongben Ni, Jinhong Ding, Tao Zhang, Ran Zhang and Xintian Jiang    
The diverse nature of hull components in shipbuilding has created a demand for intelligent robots capable of performing various tasks without pre-teaching or template-based programming. Visual perception of a target?s outline is crucial for path planning... ver más

 
Su Young Kim and Yoon Sang Kim    
Multiple markers are generally used in augmented reality (AR) applications that require accurate registration, such as medical and industrial fields. In AR using these markers, there are two inevitable problems: (1) geometric shape discrepancies between ... ver más
Revista: Applied Sciences

 
Xiongchuan Chen, Shuangcheng Zhang, Bin Wang, Guangwei Jiang, Chuanlu Cheng, Xin Zhou, Zhijie Feng and Jingtao Li    
The motion of a continuously operating reference station is usually dominated by the long-term crustal motions of the tectonic block on which the station is located. Monitoring changes in the coordinates of reference stations located at tectonic plate bo... ver más
Revista: Applied Sciences

 
Haojie Lian, Xinhao Li, Leilei Chen, Xin Wen, Mengxi Zhang, Jieyuan Zhang and Yilin Qu    
Neural radiance fields and neural reflectance fields are novel deep learning methods for generating novel views of 3D scenes from 2D images. To extend the neural scene representation techniques to complex underwater environments, beyond neural reflectanc... ver más