Resumen
During current high-speed cutting processing, the requirements on the CNC machine tool, controller, and cutting technique has become higher and higher. This research focuses on cutting tools, when the rake angles of different tools cause the shearing cut to change, and when the cutting force and cutting resistance are changed accordingly. In general, the rake angle is smaller in rough machining and bigger in finish machining. Therefore, the size of the rake angle should be decided on by considering the workpiece, feed-rate, cutting depth, cutting speed, cutter life, etc. In this research, we make different changes to the rake angle of the milling cutter and do real cutting tests to discuss the impact that rake angle change has on its processing characteristics. During the cutting experiment, by setting different cutting parameters, this research aims to get cutting force data using the dynamometer and the signal interceptor, and to analyze the relevance of the cutting force change, abrasion of tool, surface roughness, and chip morphology of different rake angles. This will be done through observation when the rake angle is 0°, when the cutting force in the X/Y/Z direction is the smallest, when the depth of the cut is 0.1 to 0.3 mm, and when the tangential shear cutting constant Kts is reduced by 50%.