Inicio  /  Water  /  Vol: 15 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

Motion Characteristics of Gas?Liquid Two-Phase Flow of Microbubbles in a Labyrinth Channel Used for Aerated Drip Irrigation

Yanfang Liu    
Guocui Wang    
Xianna Zhang    
Hongchen Li    
Bingcheng Si    
Wenqian Liu and Zhenhua Zhang    

Resumen

The indefinite characteristics of gas?liquid two-phase flow limit the usage of aerated drip irrigation. Gas?liquid two-phase flow in a labyrinth channel was observed using a particle tracking velocimetry (PTV) technique in this study. The motion trajectory and velocity vector of large numbers of microbubbles were characterized and analyzed at 0.01, 0.02, 0.04 MPa inlet pressure and in three labyrinth channels with different geometries. The results indicated that bubbly flow was the typical flow pattern in a labyrinth channel, with slug flow occurring occasionally. Smooth and gliding motion trajectories of bubbles were observed in the mainstream zone, while twisted trajectories were seen in the vortex zone. Increasing the inlet pressure increased the number of bubbles and the trajectory length in the vortex zone. When the inlet pressure increased from 0.02 to 0.04 MPa, the 25th percentile of Rc-t (the Ratio of Circular path length in the vortex zone to the Total trajectory length for a single bubble) increased from 0 to 12.3%, 0 to 6.1%, and 0 to 5.2% for channels A, B, and C, respectively; the 75th percentile increased from 31.3% to 43.9%, 27.5% to 31.9%, and 18.7% to 22.3%. The velocity vectors of the bubbles showed position dependence. Bubbles with high speed were found in the mainstream zone with their directions parallel to the water flow direction. Bubbles with low speed were seen in the vortex zone, moving in all directions. With inlet pressure increased from 0.01 to 0.04 MPa, the mean instantaneous velocities of bubbles in channels A, B, and C are increased by 106.2%, 107.6%, and 116.6%, respectively. At 0.04 MPa, channel A has the longest path length and the highest instantaneous velocity of bubbles in the vortex zone among three channels, exhibiting the highest anti-clogging performance of the three channels. This study will help in the comprehensive understanding of gas?liquid two-phase flow in a labyrinth channel used for aerated drip irrigation.

 Artículos similares

       
 
Simok Lee and Byeongil Kim    
Recently, performance development related to noise, vibration, and harshness in sunroof systems has attracted significant research attention. However, research thus far has been limited to analytical and experimental studies relating to structural improv... ver más
Revista: Applied Sciences

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Ning Hu, Gangchen Sun, Feng Liu, Bai Yang and Hailing Li    
In order to study the influence of falling rock shapes on their rolling characteristics and to determine the optimization of falling rock protection design, a series of research experiments were conducted. Model experiments were designed to explore the r... ver más
Revista: Applied Sciences

 
Kichan Sim and Kangsu Lee    
A digital twin is a virtual model of a real-world structure (such as a device or equipment) which supports various problems or operations that occur throughout the life cycle of the structure through linkage with the actual structure. Digital twins have ... ver más

 
Jiaming Xiong, Song Sang, Xiao Shi and Chaojie Gan    
This study investigates the vertical-type submerged floating tunnel with anchor cables. Based on the characteristics of the anchor cables, the anchor cables are simplified as a nonlinear beam model with hinged ends. Disregarding the axial displacement of... ver más