Inicio  /  Applied Sciences  /  Vol: 12 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

An Efficient Algorithm for Mapping Deep Learning Applications on the NoC Architecture

Zeeshan Ali Khan    
Ubaid Abbasi and Sung Won Kim    

Resumen

Network-on-chip (NoC) is replacing the existing on-chip communication mechanism in the latest, very-large-scale integration (VLSI) systems because of their fault tolerant design. However, in addition to the design challenges, NoC systems require a mechanism for proper application mapping in order to produce maximum benefits in terms of application-level latency, platform energy consumption, and system throughput. Similarly, the neural-network (NN)-based artificial intelligence (AI) techniques for deep learning are gaining particular interest. These applications can be executed on a cloud-based system, but some of these applications have to be executed on private cloud to integrate the data privacy. Furthermore, the public cloud systems can also be made from these NoC platforms to have better application performance. Therefore, there is a need to optimally map these applications on existing NoC-based architectures. If the application is not properly mapped, then it can create a performance hazard that may lead to delay in calculations, increase in energy consumption, and decrease in the platform lifetime. Hence, the real-time applications requiring AI services can implement these algorithms in NoC-based architectures with better real-time performance. In this article, we propose a multilevel mapping of deep learning AI applications on the NoC architectures and show its results for the energy consumption, task distribution profile, latency, and throughput. The simulation is conducted using the OCTAVE, and the simulation results show that the performance of the proposed mapping technique is better than the direct mapping techniques.

 Artículos similares

       
 
Vedat Dogan and Steven Prestwich    
In a multi-objective optimization problem, a decision maker has more than one objective to optimize. In a bilevel optimization problem, there are the following two decision-makers in a hierarchy: a leader who makes the first decision and a follower who r... ver más
Revista: Algorithms

 
Raymundo Peña-García, Rodolfo Daniel Velázquez-Sánchez, Cristian Gómez-Daza-Argumedo, Jonathan Omega Escobedo-Alva, Ricardo Tapia-Herrera and Jesús Alberto Meda-Campaña    
This research introduces a physics-based identification technique utilizing genetic algorithms. The primary objective is to derive a parametric matrix, denoted as A, describing the time-invariant linear model governing the longitudinal dynamics of an air... ver más
Revista: Aerospace

 
Zhuopu Wang, Kairui Yu and Yuanzhe Liu    
The unsteady combustion of solid propellants under oscillating environments is the key to understanding the combustion instability inside solid rocket motors. The discontinuous Galerkin?finite element method (DG-FEM) is introduced to provide an efficient... ver más
Revista: Aerospace

 
Majdi Sukkar, Madhu Shukla, Dinesh Kumar, Vassilis C. Gerogiannis, Andreas Kanavos and Biswaranjan Acharya    
Effective collision risk reduction in autonomous vehicles relies on robust and straightforward pedestrian tracking. Challenges posed by occlusion and switching scenarios significantly impede the reliability of pedestrian tracking. In the current study, w... ver más
Revista: Information

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information