Inicio  /  Water  /  Vol: 9 Par: 11 (2017)  /  Artículo
ARTÍCULO
TITULO

Analysis of Dynamic Spatiotemporal Changes in Actual Evapotranspiration and Its Associated Factors in the Pearl River Basin Based on MOD16

Tao Zhang and Yangbo Chen    

Resumen

Evapotranspiration is an important part of the hydrological cycle, surface energy balance and global climate system. Due to spatial heterogeneity, the trends in actual evapotranspiration (ET) and its associated factors vary in different regions. Because direct measurements of ET are limited over large areas, remote sensing provides an efficient method of ET spatial analysis, and standard data products are available at the global scale. This study uses the monthly MOD16 ET dataset and daily meteorological data to analyze the dynamic spatiotemporal changes in ET and its associated factors in the Pearl River Basin (PRB) from 2000 to 2014. The results of the study are as follows. (1) Over time and space, annual ET exhibited a slight increasing trend from 2000 to 2014, with an average value of approximately 946.56 mm/a. ET considerably varied at the monthly and seasonal scales, and in July displayed the highest monthly ET of approximately 119.57 mm, accounting for 36.37% of the annual ET. (2) ET displayed obvious spatial heterogeneity. Specifically, the west was a low-ET region, and moderate and high ET values were interspersed in the central and eastern PRB. Moreover, the rate of change of ET ranged from -13.99 mm/a to 12.81 mm/a in space, and 46.25% of the basin exhibited an increasing trend. (3) Dynamic changes in ET were mainly associated with temperature and relative humidity (RH). Additionally, energy-related elements and wind speed were positively correlated with ET, and temperature was the most influential factor of ET in some months (February?March and September?November). RH was the most important factor in other months but negatively correlated with ET in June and July. Affected by the actual environmental condition, qualitative changes were observed in the correlation between RH and ET in different months. The positive and negative spatial correlations between ET and its associated factors changed in different regions and in different months, and the changes mainly occurred from northwest to southwest.

 Artículos similares

       
 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Seong Hyun Hong, Young Jin Kim, Soo Hyung Park, Sung Nam Jung and Ki Ro Kim    
The air and structural loads of a 5-ton class light helicopter (LH) rotor in a 2.24 g pull-up maneuver are investigated using a coupling between the computational structural dynamics (CSD) and computational fluid dynamics (CFD) methods. The LH rotor is c... ver más
Revista: Aerospace

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace

 
Mingsheng Chen, Lenan Yang, Xinghan Sun, Jin Pan, Kai Zhang, Lin Lin, Qihao Yun and Ziwen Chen    
Evidence points to increasing the development of floating wind turbines to unlock the full potential of worldwide wind-energy generation. Barge-type floating wind turbines are of interest because of their shallow draft, structural simplicity, and moonpoo... ver más

 
Dong Min Kim, Soon Ho Hong, Se Hyeon Jeong and Sun Je Kim    
The interest in wind-assisted ship propulsions (WASPs) is increasing to improve fuel efficiency and to reduce greenhouse gas emissions in ships. A rotor sail, one of the typical WASPs, can provide auxiliary propulsive force by rotating a cylinder-shaped ... ver más