Inicio  /  Applied Sciences  /  Vol: 13 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

A Numerical Analysis for Ball End Milling Due to Coupling Effects of a Flexible Rotor-Bearing System Using GPEM

Chun-Jung Huang    
Jer-Rong Chang    
Ting-Nung Shiau and Kuan-Hung Chen    

Resumen

In this paper, the tool-tip responses for ball end milling, due to the coupling effects of a flexible rotor-bearing system, are investigated numerically. The milling machine tool spindle is modelled as the flexible rotor-bearing system. The critical speeds, natural modes, and unbalance responses of the system are calculated by applying the generalized polynomial expansion method. This generalized polynomial expansion method expresses the displacement as a series formed by the product of generalized coordinates and axial coordinate polynomials. According to the dynamic cutting force obtained by some scholars in the past, combined with the characteristics of the flexible rotor, the dynamic response of the tool-tip for ball end milling is numerically analyzed. The responses, including time histories, orbits, and FFT diagrams, are plotted to analyze the dynamic behaviors of the tool-tip. The coupling effects of the flexible rotor-bearing system on the system for ball end milling are first studied using the generalized polynomial expansion method. Unlike previous studies, the natural frequency varies with spindle speed and which of the different modes are included in the tool-tip response depends mainly on the spindle speed. Thanks to the gyroscopic effect, the critical speeds and responses of tool-tips can be discussed with respect to various spindle speed and tool flutes. The natural modes are accurately determined, and will excite critical speeds for certain modes, including forward and backward modes, thereby significantly affecting tool-tip response. In addition, the cutting force component associated with the tool-tip response affects the rotor-bearing system parameters, complicating the issue. Milling at higher spindle speed (2160?19,950 rpm), an important new result is found that the tool-tip oscillates with the cutting-force frequency, accompanied by a longer period vibration of the first backward mode of the rotor-bearing system. It can also be seen from the frequency spectrum analysis that, as the spindle speed increases, the peak amplitude of the first backward mode becomes larger. Milling at lower spindle speed (960, 1320 rpm), the in-plane vibration trajectory of the tool-tip gradually expands outwards clockwise around the origin until a stable loop is reached. This is because only the first backward mode of the rotor-bearing system is excited. Considering the coupling effect of the rotor-bearing system to perform the vibration analysis of the milling machine system, the parameters of the system can be designed or the spindle speed can be selected to avoid severe vibration during machining.

 Artículos similares

       
 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Omer Faruk Can, Nevin Celik, Filiz Ozgen, Celal Kistak and Ali Taskiran    
In this study, a numerical and experimental analysis of a solar collector with roughness elements in the form of stainless-steel scourers on the absorber surface is presented. According to the location type and number of the stainless steel scourers, the... ver más
Revista: Applied Sciences

 
Iurii Vakaliuk, Silke Scheerer and Manfred Curbach    
In the case of solid slabs made from reinforced concrete that are usually subjected to bending, large areas of the structure are stressed well below their load-bearing capacity or remain stress-free. Contrary to this are shell structures, which can bridg... ver más
Revista: Applied Sciences

 
Young-Cheol Kim, Dong-Hyeop Kim and Sang-Woo Kim    
To achieve the commercialization of electric vertical takeoff and landing (eVTOL) aircrafts, which have recently garnered attention as the next-generation means of transportation, objective certification based on rigorous procedures is essential. With th... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más