Inicio  /  Water  /  Vol: 16 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Hydrological Simulation Study in Gansu Province of China Based on Flash Flood Analysis

Bingyu Zhang    
Yingtang Wei    
Ronghua Liu    
Shunzhen Tian and Kai Wei    

Resumen

The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is difficult to perform the simulation for Gansu Province due to the fact that it covers a wide range, from north to south, with multiple climate types and diverse landforms. The China Flash Flood Hydrological Model (CNFF) was implemented in this study. A total of 11 model clusters and 289 distributed hydrological models were divided based on hydrology, climate, and land-use factors, among others. A spatiotemporally mixed runoff method and the Event-Specific Geomorphological Instantaneous Unit Hydrograph (GIUH) were applied based on large-scale fast parallel computation. To improve model calibration and validation efficiency, the RSA method (Regionalized Sensitivity Analysis) was used for CNFF model parameter sensitivity analysis, which could reduce the number of model parameters that need to be adjusted during the calibration period. Based on the model sensitivity analysis results, the CNFF was established in Gansu Province to simulate flood events in eight representative watersheds. The average NSE, REQ, and ET were 0.76 and 0.73, 9.1% and 12.6%, and 1.2 h and 1.7 h, respectively, in the calibration and validation period. In general, the CNFF model shows a good performance in multiple temporal and spatial scales, thus providing a scientific basis for flash flood early warning and analysis in Gansu Province.

 Artículos similares

       
 
Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta and Harouna Karambiri    
This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore... ver más
Revista: Hydrology

 
Pengxuan Zhao, Chuanhai Wang, Jinning Wu, Gang Chen, Tianshu Zhang, Youlin Li and Pingnan Zhang    
In the wake of frequent and intensive human activities, highly urbanized areas consistently grapple with severe water environmental challenges. It becomes imperative to establish corresponding water environment models for simulating and forecasting regio... ver más
Revista: Hydrology

 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water

 
Hossein Salehi, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari and Babak Ghazi    
Hydrological modeling is essential for runoff simulations in line with climate studies, especially in remote areas with data scarcity. Advancements in climatic precipitation datasets have improved the accuracy of hydrological modeling. This research aims... ver más
Revista: Water

 
Shuqi Zhang, Tong Zhi, Hongbo Zhang, Chiheng Dang, Congcong Yao, Dengrui Mu, Fengguang Lyu, Yu Zhang and Shangdong Liu    
The hydrological series in the Loess Plateau region has exhibited shifts in trend, mean, and/or variance as the environmental conditions have changed, indicating a departure from the assumption of stationarity. As the variations accumulate, the compound ... ver más
Revista: Water