Inicio  /  Applied Sciences  /  Vol: 9 Par: 21 (2019)  /  Artículo
ARTÍCULO
TITULO

Study of the Dynamic Behaviour of Circular Membranes with Low Tension

Antonia Lima-Rodriguez    
Antonio Gonzalez-Herrera and Jose Garcia-Manrique    

Resumen

The dynamic behaviour of membranes has been widely studied by well-known authors for a long time. A clear distinction can be made between the behaviour of membranes without tension (plate case) and membranes subjected to large tension or pre-strain in their plane (membrane case). In classical theories, less attention has been paid to membranes subjected to a low level of tension, which solution is between both extreme cases. Recently, certain fields of research are demanding solutions for this intermediate behaviour. It is the case of membranes present in MEMS and sensor or the response of the tympanic membrane in mammals hearing system. In this paper, the behaviour of plates and circular membranes with boundary conditions clamped in the edges has been studied. The natural frequencies for both cases (plate and membrane) have been calculated using the solutions of the traditional theories and these have been compared with the numerical frequencies calculated by finite element analysis. The dynamic response of membrane with low tension, corresponding to a transition between these extreme behaviours, has also been calculated. A theoretical solution has been used complemented with a wide set of numerical finite elements calculations. The analytical and numerical solutions are very close, being the error made using both methods very low; nevertheless, there are no analytical solutions for the entire transition zone between the plate and membrane behaviour. Therefore, this range has been completed using finite element analysis. Broad ranges of geometric configurations have been studied. The transition behaviour of the membrane has been clearly identified. The main practical consequences of these results have been discussed, in particular focused on the response of the tympanic membrane.

Palabras claves

 Artículos similares

       
 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más

 
Ying Li, Liu Du and Yung-Ho Chiu    
Water scarcity is increasingly being recognized as a global concern. Sustainable Development Goal 6 (SDG-6) was established by the United Nations to address water resource governance within its sustainable development framework. This study employs the en... ver más
Revista: Water

 
Kees Nederhoff, Sean C. Crosby, Nate R. Van Arendonk, Eric E. Grossman, Babak Tehranirad, Tim Leijnse, Wouter Klessens and Patrick L. Barnard    
The Puget Sound Coastal Storm Modeling System (PS-CoSMoS) is a tool designed to dynamically downscale future climate scenarios (i.e., projected changes in wind and pressure fields and temperature) to compute regional water levels, waves, and compound flo... ver más
Revista: Water

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Jacopo Beretta, Andres Cardozo, Nicola Paletta, Antonio Chiariello and Marika Belardo    
The T-WING project, a CS2-CPW (Clean Sky 2 call for core partner waves) research initiative within FRC IADP (Fast Rotor-Craft Innovative Aircraft Demonstrator Platform), focuses on developing, qualifying and testing the new wing of the Next-Generation Ci... ver más
Revista: Aerospace