ARTÍCULO
TITULO

Dynamic Behavior of the Deepwater Flexible Pipeline during Pipe Laying Process

Liquan Wang    
Ming Ju    
Xiaodong Xing    
Feihong Yun and Xiangyu Wang    

Resumen

The dynamic behavior of the flexible pipeline during deepwater Flex-lay directly determines the structures of laying facilities and the actual installation process. A coupled dynamic model considering the effects of different factors was established in this paper. Based on the model, the initial attitude of the flexible pipeline during the laying process was determined by using the natural catenary theory and Morison equation. The hydrodynamic analysis of the HYSY201 pipelaying vessel was carried out by using the finite element software AQWA. Under the specific sea condition, a flexible pipeline with outer-diameter of 352.42 mm being laid onto the 3000 m deep seabed was simulated by using the software OrcaFlex to study the pipeline dynamic behaviors including axial tension, bending moment and stress-strain in the laying process, and the factors affecting the dynamic behavior of the pipeline were analyzed. The results show a significant correlation between the marine loads, vessel motion and the dynamic response of the pipeline. Compared with the static state case, the maximum axial tension, bending moment and stress-strain of the pipeline under the interaction of the marine loads and the vessel motion increased by 42.7%, 220%, 52% and 18.7%, separately. Among the marine loads, the surface wave had the most significant effect on the dynamic performance of the pipeline. When the wave direction acts on the width of the ship, the wave height is greater than 2 m and the spectrum period is eight seconds, the wave has the greatest influence on the dynamic response of the pipeline.

 Artículos similares

       
 
Cesare Patuelli, Enrico Cestino and Giacomo Frulla    
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior ... ver más
Revista: Aerospace

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace

 
Evangelos Filippou, Spyridon Kilimtzidis, Athanasios Kotzakolios and Vassilis Kostopoulos    
The pursuit of more efficient transport has led engineers to develop a wide variety of aircraft configurations with the aim of reducing fuel consumption and emissions. However, these innovative designs introduce significant aeroelastic couplings that can... ver más
Revista: Aerospace

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Grigorios Kostopoulos, Konstantinos Stamoulis, Vaios Lappas and Stelios K. Georgantzinos    
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how variou... ver más
Revista: Aerospace