Inicio  /  Applied Sciences  /  Vol: 13 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Adaptive Neural Trajectory Tracking Control for Synchronous Generators in Interconnected Power Systems

Ruben Tapia-Olvera    
Francisco Beltran-Carbajal and Antonio Valderrabano-Gonzalez    

Resumen

The synchronous generator is one of the most important active components in current electric power systems. New control methods should be designed to guarantee an efficient dynamic performance of the synchronous generator in strongly interconnected nonlinear power systems over a wide range of variable operating conditions. In this context, active suppression capability for different uncertainties and external disturbances represents a current trend in the development of new control design methodologies. In this paper, a new adaptive neural control scheme based on differential flatness with a modified structure including B-spline Neural Networks for transient stabilization and tracking of power-angle reference profiles for synchronous generators in interconnected electric power systems is introduced. These features are attained due to the advantages extracted of these two approaches: (a) a control design stage based on a power system model by differential flatness and (b) an adaptive performance using a correct design of B-spline Neural Networks, minimizing parameter dependency. The effectiveness of the proposed algorithm is demonstrated by simulation results in two test systems: single machine infinite bus and an interconnected power system. Transient stability and robust power-angle reference profile tracking are both verified.

 Artículos similares

       
 
Bangchu Zhang, Yiyong Liang, Shuitao Rao, Yu Kuang and Weiyu Zhu    
In hypersonic flight control, characterized by challenges posed by input saturation, model parameter uncertainties, and external disturbances, this paper introduces a pioneering anti-input saturation control method based on RBFNN adaptivity. We have deve... ver más
Revista: Aerospace

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
In the context of automatic charging for electric vehicles, collision localization for the end-effector of robots not only serves as a crucial visual complement but also provides essential foundations for subsequent response design. In this scenario, dat... ver más
Revista: Applied Sciences

 
Zilin Zhao, Zhi Cai, Mengmeng Chang and Zhiming Ding    
Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large... ver más
Revista: Applied Sciences