Inicio  /  Algorithms  /  Vol: 13 Par: 9 (2020)  /  Artículo
ARTÍCULO
TITULO

When 5G Meets Deep Learning: A Systematic Review

Guto Leoni Santos    
Patricia Takako Endo    
Djamel Sadok and Judith Kelner    

Resumen

This last decade, the amount of data exchanged on the Internet increased by over a staggering factor of 100, and is expected to exceed well over the 500 exabytes by 2020. This phenomenon is mainly due to the evolution of high-speed broadband Internet and, more specifically, the popularization and wide spread use of smartphones and associated accessible data plans. Although 4G with its long-term evolution (LTE) technology is seen as a mature technology, there is continual improvement to its radio technology and architecture such as in the scope of the LTE Advanced standard, a major enhancement of LTE. However, for the long run, the next generation of telecommunication (5G) is considered and is gaining considerable momentum from both industry and researchers. In addition, with the deployment of the Internet of Things (IoT) applications, smart cities, vehicular networks, e-health systems, and Industry 4.0, a new plethora of 5G services has emerged with very diverging and technologically challenging design requirements. These include high mobile data volume per area, high number of devices connected per area, high data rates, longer battery life for low-power devices, and reduced end-to-end latency. Several technologies are being developed to meet these new requirements, and each of these technologies brings its own design issues and challenges. In this context, deep learning models could be seen as one of the main tools that can be used to process monitoring data and automate decisions. As these models are able to extract relevant features from raw data (images, texts, and other types of unstructured data), the integration between 5G and DL looks promising and one that requires exploring. As main contribution, this paper presents a systematic review about how DL is being applied to solve some 5G issues. Differently from the current literature, we examine data from the last decade and the works that address diverse 5G specific problems, such as physical medium state estimation, network traffic prediction, user device location prediction, self network management, among others. We also discuss the main research challenges when using deep learning models in 5G scenarios and identify several issues that deserve further consideration.

 Artículos similares