Inicio  /  Buildings  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental and Numerical Study of the Influence of Solar Radiation on the Surface Temperature Field of Low-Heat Concrete in a Pouring Block

Zhipeng Liang    
Huawei Zhou    
Chunju Zhao    
Fang Wang and Yihong Zhou    

Resumen

With the influence of intense solar radiation heat and the greater temperature difference between day and night, surface concrete with a drastic temperature change can easily experience a great nonlinear temperature difference, which increases the risk of early-age concrete cracking. In this study, a distributed optical fiber temperature sensing (DTS) system is used to monitor the surface temperature gradient of concrete in real time, and a solar radiation heat monitoring test is also carried out based on the Baihetan project. Based on this, a solar radiation loading model and a finite element model of a typical pouring block considering solar radiation are established. Combined with the measured temperature data and different calculation conditions, the surface temperature changes of medium-heat and low-heat concrete experiencing solar radiation are analyzed, and the temperature control effect of surface concrete with different surface insulation measures is further analyzed. The results show that the temperature variation of medium-heat concrete at the same depth is more obvious than that of low-heat concrete. Additionally, the temperature variation of low-heat concrete is noticeable within 20 cm of the top surface. In addition, in an intense solar radiation environment, covering the concrete with a 4- or 5-centimeter-thick polyethylene coil can effectively control the surface temperature gradient and maximum daily amplitude of low-heat concrete, and surface concrete cured by running water has a significant temperature control effect. Therefore, it is suggested that 22?24 °C water temperatures be used for water curing during periods of intense solar radiation during the day and a 4-centimeter-thick polyethylene coil be used for coverage at night. These study results have been employed in the Baihetan project to optimize the temperature control scheme of the pouring blocks.

 Artículos similares

       
 
Oscar Bermejo, Juan Manuel Gallardo, Adrian Sotillo, Arnau Altuna, Roberto Alonso and Andoni Puente    
Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon dep... ver más

 
Christian Lehr, Pascal Munsch, Romuald Skoda and Andreas Brümmer    
The acoustic properties of a single-stage centrifugal pump with low specific speed are investigated by means of compressible 3D CFD simulations (URANS) and experiments. In order to determine the pump?s acoustic transmission and excitation characteristics... ver más

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Alexander Hergt, Tobias Danninger, Joachim Klinner, Sebastian Grund, Manfred Beversdorff and Christian Werner-Spatz    
In this paper, an experimental and numerical investigation of the effect of leading-edge erosion in transonic blades was performed. The measurements were carried out on a linear blade cascade in the Transonic Cascade Wind Tunnel of DLR in Cologne at two ... ver más