ARTÍCULO
TITULO

Comparison of Existing Equations for the Design of Crown Walls: Application to the Case Study of Ericeira Breakwater (Portugal)

Fábio Pereira    
Maria Graça Neves    
José-Santos López-Gutiérrez    
María Dolores Esteban and Vicente Negro    

Resumen

The correct calculation of forces and moments caused by wave action over crown wall structures is critical for their design. There are several existing equations for this, some of which are sanctioned in practice as it is the case for Jensen (1984) and Bradbury et al. (1998), Günback and Gökce (1984), Martin et al. (1999), Berenguer and Baonza (2006), and Pedersen (1996) and Nørgaard et al. (2013). These equations are the main tool for the design of breakwater crown walls and their accuracy is crucial to ensure the stability of the crown wall, especially when considering the sea level rise due to climate change and the possible damage of the armor, since both aspects are not usually considered in most original design studies. In a scenario of climate change, it is very important to estimate the possible changes in security factors due to both these aspects, comparing the results with the original design ones. This paper has as main objective to analyze it for the case study of Ericeira rubble mound breakwater in Portugal. For this, a comparison of the results using those equations and different scenarios including the current, considering sea level rise and armor damage, were performed to extract some conclusions: the increase in the sea level in the case study was not significant and therefore its incidence is very small; and the damage to the main armor by losing pieces at the berm is much more important in this case study, so it is essential to carry out the proper maintenance of the design section. On the other hand, horizontal forces are more conservative using Pedersen and Nørgaard equations, obtaining the lowest value with Martin. Regarding uplift pressures, Martin gives the lowest value, while the most conservative values are given by Günbak and Gökce?s for two scenarios, and Pedersen and Nørgaard for the other two scenarios. Furthermore, the sliding safety coefficient is more conditioning than overturning the safety coefficient in all the scenarios.

 Artículos similares

       
 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Xiaomin Liu, Kezhi Wang, Tingxi Liu and Wenguang Wang    
Excessive sedimentation in sand-laden rivers significantly hinders the normal operation and overall effectiveness of reservoirs. This is observed particularly in plain-type sand-laden reservoirs where weak hydraulic conditions in the reservoir area contr... ver más
Revista: Water

 
Xiaolei Zhang, Zhengzheng Bi, Junguo Liu, Zhiheng Xu and Xiaoyi Guo    
The calculation of erosion and deposition in riverways plays a pivotal role in river morphology studies, comprehensive river management and flood safety. Some existing methods have certain limitations in terms of accuracy and applicability. To address th... ver más
Revista: Water

 
Domenik Radeck, Felix He-Mao Hsu, Florian Janke, Gabriele Semino, Tim Hofmann, Sebastian Rink and Agnes Jocher    
The hyperloop concept envisions a low pressure tube and capsules, called pods, traveling at the speed of commercial aircraft as a sustainable, future-proof mass transportation system between cities. However, in contrast to the use case of such a system, ... ver más

 
Shunfang Hu, Shaoping Jiang, Qing Miao, Fan Yang, Weihong Zhou and Peng Duan    
With the rise of the Internet of Things (IoT), maintaining data confidentiality and protecting user privacy have become increasingly challenging. End devices in the IoT are often deployed in unattended environments and connected to open networks, making ... ver más
Revista: Applied Sciences