Inicio  /  Applied Sciences  /  Vol: 12 Par: 19 (2022)  /  Artículo
ARTÍCULO
TITULO

The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS

Andrew Carter    
Seth Racey and Stephany Veuger    

Resumen

Iron is a key metal involved in several biological processes such as DNA replication and repair, cellular proliferation and cell cycle regulation. Excess volumes of labile iron are toxic and can lead to the production of ROS (reactive oxygen species) via Fenton chemistry. Due to this reactive nature, it can contribute to DNA damage and genomic instability. Therefore, excess iron in the labile iron pool is associated with cancer, which has made the labile iron pool a crucial target for anticancer therapy by targeting iron. This iron can be incorporated into essential enzymes such as ribonucleotide reductase (RnR). Over several decades of research, iron chelators function as more than just RnR inhibitors. Indeed, a plethora of iron chelator mechanisms can result in therapeutic properties that can target critical steps of cancer cells? aberrant biological abilities such as proliferation, migration and metastasis. One such mechanism is the production of redox-active complexes that can produce toxic levels of ROS in cancer cells. Cancer cells are potentially more susceptible to ROS production or modulation of antioxidant levels. Understanding iron metabolism is vital in targeting cancer. For instance, Fe-S clusters have recently been shown to play crucial roles in cell signalling by ROS through their incorporation into essential DNA replication and repair enzymes. ROS can also degrade Fe-S clusters. Iron chelators that produce toxic levels of ROS, therefore, could also target Fe-S centres. Thus, the design of iron chelators is important, as this can determine if it will participate in redox cycling and produce ROS or if it is solely used to remove iron. This review focuses on alterations in cancer iron metabolism, iron?s role in genomic stability and how the design of chelators can use Fenton chemistry to their advantage to cause DNA damage in cancer cells and potentially inhibit Fe-S centres.

Palabras claves

 Artículos similares

       
 
Linh Doan    
Methylene blue (MB) is a hazardous chemical that is widely found in wastewater, and its removal is critical. One of the most common methods to remove MB is adsorption. To enhance the adsorption process, magnetic adsorbents, particularly those based on su... ver más
Revista: ChemEngineering

 
María del Carmen Marco de Lucas, Franck Torrent, Gianni-Paolo Pillon, Pascal Berger and Luc Lavisse    
Surface laser treatment (SLT) using nanosecond IR lasers has been shown to improve the tribological behaviour of titanium. Here, we studied the fretting wear of SLT-functionalized pure titanium in a mixture of reactive gases O2" role="presentation" style... ver más
Revista: Coatings

 
Minh Hiep Trinh, Quang Dang Pham and Van Nam Giap    
A slotless self-bearing motor (SSBM) is a new type of electric motor, with its levitating and rotating capability as a drive system. In the design of motor, the iron core of stator was removed, it could have many advantages such as small size, light, no ... ver más

 
Md. Shafiquzzaman, Amimul Ahsan, Md. Mahmudul Hasan, Abdelkader T. Ahmed and Quazi Hamidul Bari    
Higher levels of arsenic (As) and iron (Fe) in groundwater have been reported globally. This study aims to enhance our understanding of the role of naturally occurring dissolved Fe(II) in removing As from groundwater. Field experiments were conducted usi... ver más
Revista: Water

 
Huali Zhang, Minghui Zhang, Jicai Kuai and Dmitrii V. Ardashev    
Non-abrasive iron-based grinding diamond wheels, lacking abrasive particles, negate the concern of detached passivated abrasives scratching the polished surface. During the Electrolytic In-Process Dressing (ELID) polishing process, a-Fe2O3 particles form... ver más
Revista: Applied Sciences