Resumen
To address the problem of poor ridging effect, a sweet potato ridging and shaping machine was designed and its overall structure and working principles were described. The design parameters of rotary tillage device, furrowing and shaping device and pressing and shaping device were determined. The motion model of soil particles on the furrowing and shaping device was analyzed, the force model of the furrowing and shaping device was established. A response surface Box?Behnken Design test was carried out to obtain the better working parameters of the sweet potato ridging and shaping machine as follows: the embedded depth is 196 mm, the forward speed is 0.82 m/s, and the soil moisture is 18%. At this time the stability coefficient of the ridge height was 99.84%. The comparative test showed that the operation performance and fuel consumption of the ridge shaping machine were better than 1GQL-2 sweet potato two rows rotary plowing and ridging machine, which met the agronomic requirements and created a good soil environment for sweet potato. The research can provide a design reference for the development and application of sweet potato transplanting machinery and ridging machinery in hilly areas.