Inicio  /  Algorithms  /  Vol: 16 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Based on EfficientNet for Multiorgan Segmentation of Thoracic Structures on a 0.35 T MR-Linac Radiation Therapy System

Mohammed Chekroun    
Youssef Mourchid    
Igor Bessières and Alain Lalande    

Resumen

The advent of the 0.35 T MR-Linac (MRIdian, ViewRay) system in radiation therapy allows precise tumor targeting for moving lesions. However, the lack of an automatic volume segmentation function in the MR-Linac?s treatment planning system poses a challenge. In this paper, we propose a deep-learning-based multiorgan segmentation approach for the thoracic region, using EfficientNet as the backbone for the network architecture. The objectives of this approach include accurate segmentation of critical organs, such as the left and right lungs, the heart, the spinal cord, and the esophagus, essential for minimizing radiation toxicity during external radiation therapy. Our proposed approach, when evaluated on an internal dataset comprising 81 patients, demonstrated superior performance compared to other state-of-the-art methods. Specifically, the results for our approach with a 2.5D strategy were as follows: a dice similarity coefficient (DSC) of 0.820 ± 0.041, an intersection over union (IoU) of 0.725 ± 0.052, and a 3D Hausdorff distance (HD) of 10.353 ± 4.974 mm. Notably, the 2.5D strategy surpassed the 2D strategy in all three metrics, exhibiting higher DSC and IoU values, as well as lower HD values. This improvement strongly suggests that our proposed approach with the 2.5D strategy may hold promise in achieving more precise and accurate segmentations when compared to the conventional 2D strategy. Our work has practical implications in the improvement of treatment planning precision, aligning with the evolution of medical imaging and innovative strategies for multiorgan segmentation tasks.

 Artículos similares

       
 
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo    
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M... ver más
Revista: Information

 
Maryan Rizinski, Andrej Jankov, Vignesh Sankaradas, Eugene Pinsky, Igor Mishkovski and Dimitar Trajanov    
The task of company classification is traditionally performed using established standards, such as the Global Industry Classification Standard (GICS). However, these approaches heavily rely on laborious manual efforts by domain experts, resulting in slow... ver más
Revista: Information

 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Nawaf Alharbi, Mustafa Youldash, Duha Alotaibi, Haya Aldossary, Reema Albrahim, Reham Alzahrani, Wahbia Ahmed Saleh, Sunday O. Olatunji and May Issa Aldossary    
Fetal hypoxia is a condition characterized by a lack of oxygen supply in a developing fetus in the womb. It can cause potential risks, leading to abnormalities, birth defects, and even mortality. Cardiotocograph (CTG) monitoring is among the techniques t... ver más
Revista: AI