Inicio  /  Algorithms  /  Vol: 12 Par: 5 (2019)  /  Artículo
ARTÍCULO
TITULO

Free Surface Flow Simulation by a Viscous Numerical Cylindrical Tank

Xingyue Ren    
Fangjie Xiong    
Ke Qu and Norimi Mizutani    

Resumen

In order to numerically investigate the free surface flow evolution in a cylindrical tank, a regular structured grid system in the cylindrical coordinates is usually applied to solve control equations based on the incompressible two-phase flow model. Since the grid spacing in the azimuthal direction is proportionate to the radial distance in a regular structured grid system, very small grid spacing would be obtained in the azimuthal direction and it would require a very small computational time step to satisfy the stability restriction. Moreover, serious mass disequilibrium problems may happen through the convection of the free surface with the Volume of Fluid (VOF) method. Therefore in the present paper, the zonal embedded grid technique was implemented to overcome those problems by gradually adjusting the mesh resolution in different grid blocks. Over the embedded grid system, a finite volume algorithm was developed to solve the Navier?Stokes equations in the three-dimensional cylindrical coordinates. A high-resolution scheme was applied to resolve the free surface between the air and water phases based on the VOF method. Computation of liquid convection under a given velocity field shows that the VOF method implemented with a zonal embedded grid is more advanced in keeping mass continuity than that with regular structured grid system. Furthermore, the proposed model was also applied to simulate the sharp transient evolution of circular dam breaking flow. The simulation results were validated against the commercial software Fluent, which shows a good agreement, and the proposed model does not yield any free surface oscillation.

 Artículos similares

       
 
Jingchen Wang, Qihe Shan, Tieshan Li, Geyang Xiao and Qi Xu    
This paper studied the collision avoidance issue in the formation-containment tracking control of multi-USVs (unmanned surface vehicles) with constrained velocity and driving force. Specifically, based on a dual-layer control framework, it designed a mul... ver más

 
Anqing Wang, Longwei Li, Haoliang Wang, Bing Han and Zhouhua Peng    
In this paper, a swarm trajectory-planning method is proposed for multiple autonomous surface vehicles (ASVs) in an unknown and obstacle-rich environment. Specifically, based on the point cloud information of the surrounding environment obtained from loc... ver más

 
Bingbing Wan, Yuyun Shi and Zhifu Li    
The interaction problem of waves with a body floating near the marginal ice zone is studied, where the marginal ice zone is modeled as an array of multiple uniformly sized floating ice sheets. The linear velocity potential theory is applied for fluid flo... ver más

 
Abeer S. Aloufi, Bahja Al Riyami, Mustafa A. Fawzy, Hatim M. Al-Yasi, Mostafa Koutb and Sedky H. A. Hassan    
The release of heavy metals into the environment as a result of industrial and agricultural activities represents one of the century?s most significant issues. Cobalt is a hazardous metal that is employed in a variety of industries. In this study, respon... ver más
Revista: Water

 
R. Gayathri, Jen-Yi Chang, Chia-Cheng Tsai and Tai-Wen Hsu    
An oscillating water column (OWC) is designed for the extraction and conversion of wave energy into usable electrical power, rather than being a standalone renewable energy source. This review paper presents a comprehensive analysis of the mathematical m... ver más