Inicio  /  Water  /  Vol: 10 Par: 12 (2018)  /  Artículo
ARTÍCULO
TITULO

Flood Inundation Assessment Considering Hydrologic Conditions and Functionalities of Hydraulic Facilities

Yuan-Heng Wang    
Yung-Chia Hsu    
Gene Jiing-Yun You    
Ching-Lien Yen and Chi-Ming Wang    

Resumen

This study proposed a two-phase risk analysis scheme for flood management considering flood inundation losses, including: (1) simplified qualitative-based risk analysis incorporating the principles of failure mode and effect analysis (FMEA) to identify all potential failure modes associated with candidate flood control measures, to formulate a remedial action plan aiming for mitigating the inundation risk within an engineering system; and (2) detailed quantitative-based risk analysis to employ numerical models to specify the consequences including flood extent and resulting losses. Conventional qualitative-based risk analysis methods have shown to be time-efficient but without quantitative information for decision making. However, quantitative-based risk analysis methods have shown to be time- and cost- consuming for a full spectrum investigation. The proposed scheme takes the advantages of both qualitative-based and quantitative-based approaches of time-efficient, cost-saving, objective and quantitative features for better flood management in term of expected loss. The proposed scheme was applied to evaluate the Chiang-Yuan Drainage system located on Lin-Bien River in southern Taiwan, as a case study. The remedial action plan given by the proposed scheme has shown to greatly reduce the inundation area in both highlands and lowlands. These measures was investigated to reduce the water volume in the inundation area by 0.2 million cubic meters, even in the scenario that the flood recurrence interval exceeded the normal (10-year) design standard. Our results showed that the high downstream water stage in the downstream boundary may increase the inundation area both in downstream and upstream and along the original drainage channel in the vicinity of the diversion. The selected measures given by the proposed scheme have shown to substantially reduce the flood risk and resulting loss, taking account of various scenarios: short duration precipitation, decreased channel conveyance, pump station failure and so forth.

 Artículos similares

       
 
Pawel Burandt, Miroslaw Grzybowski, Katarzyna Glinska-Lewczuk, Wojciech Gotkiewicz, Monika Szymanska-Walkiewicz and Krystian Obolewski    
The objective of the study was to determine the relationship between the structure of phytocenoses in riparian wetland ecosystems and the hydrologic regime in a lowland river floodplain. The hydrobotanical study was conducted over three years?2017, 2018,... ver más
Revista: Water

 
Erik Kralj, Peter Kumer and Cécil J. W. Meulenberg    
The escalating frequency and severity of climate-related hazards in the Mediterranean, particularly in the historic town of Piran, Slovenia, underscore the critical need for enhanced coastal flood prediction and efficient early warning systems. This stud... ver más

 
Christos Iliadis, Panagiota Galiatsatou, Vassilis Glenis, Panagiotis Prinos and Chris Kilsby    
The expansion of urban areas and the increasing frequency and magnitude of intense rainfall events are anticipated to contribute to the widespread escalation of urban flood risk across the globe. To effectively mitigate future flood risks, it is crucial ... ver más
Revista: Hydrology

 
Kevin J. Wienhold, Dongfeng Li, Wenzhao Li and Zheng N. Fang    
The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing ... ver más
Revista: Hydrology

 
Fazlul Karim, Mohammed Ali Armin, David Ahmedt-Aristizabal, Lachlan Tychsen-Smith and Lars Petersson    
Machine learning (also called data-driven) methods have become popular in modeling flood inundations across river basins. Among data-driven methods, traditional machine learning (ML) approaches are widely used to model flood events, and recently deep lea... ver más
Revista: Water