ARTÍCULO
TITULO

Path Planning of Unmanned Surface Vehicle Based on Improved Sparrow Search Algorithm

Guangzhong Liu    
Sheng Zhang    
Guojie Ma and Yipeng Pan    

Resumen

In order to solve the problem of many constraints and a complex navigation environment in the path planning of unmanned surface vehicles (USV), an improved sparrow search algorithm combining cubic chaotic map and Gaussian random walk strategy was proposed to plan it. Firstly, in the population initialisation stage, cubic chaotic map was used to replace the random generation method of the traditional sparrow search algorithm to optimise the uneven initial distribution of the population and improve the global search ability of the population. Secondly, in the late iteration of the algorithm, the standard deviation of fitness is introduced to determine whether the population is trapped in the local optimum. If true, the Gaussian random walk strategy is used to perturb the optimal individual and assist the algorithm to escape the local optimum. Thirdly, the chosen water environment is modelled, and the navigation information of the original inland electronic navigation chart (ENC) is preprocessed, gridised, and the obstacle swelling is processed. Finally, the path planning experiments of USV are carried out in an inland ENC grid environment. The experimental results show that, compared with the traditional sparrow search algorithm, the average fitness value of the path planned by improved sparrow search algorithm is reduced by 14.8% and the variance is reduced by 49.9%. The path planned by the algorithm is of good quality and high stability and, combined with ENC, it can provide a reliable path for USV.

 Artículos similares

       
 
Saurabh Chatterjee and Kaadaapuram Kurien Issac    
The specific application of this work is in the robotic path planning of camera-based non-destructive testing systems such as active thermography.
Revista: Applied Sciences

 
Chuanwei Zhang, Xinyue Yang, Rui Zhou and Zhongyu Guo    
In order to solve the problem of low safety and efficiency of underground mine vehicles, a path planning method for underground mine vehicles based on an improved A star (A*) and fuzzy control Dynamic Window Approach (DWA) is proposed. Firstly, the envir... ver más
Revista: Applied Sciences

 
Yi Zhang, Hengchao Zhao, Zheng Zhang and Hongbo Wang    
Addressing the automatic berthing task for vessels, this study introduces the Flow Matching Double Section Bezier Berth Method (FM-DSB) for handling downstream and upstream berthing instructions. By considering the orientation relationship between the di... ver más

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Chaopeng Yang, Jiacai Pan, Kai Wei, Mengjie Lu and Shihao Jia    
Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on a... ver más