Inicio  /  Water  /  Vol: 12 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Simulation of Soil Water Evaporation during Freeze?Thaw Periods under Different Straw Mulch Thickness Conditions

Junfeng Chen    
Yizhao Wei    
Xiping Zhao    
Jing Xue    
Shuyuan Xu and Qi Du    

Resumen

Straw mulching is an effective agricultural technology to reduce soil water loss in arid and semi-arid areas. Herein, the soil temperature and soil water content of bare land (LD) and 5 cm (JG5), 10 cm (JG10), 15 cm (JG15), 20 cm (JG20) and 30 cm (JG30) straw mulch thicknesses were measured through field experiments performed to assess the soil water evaporation using the simultaneous heat and water model during a freeze?thaw period. The results showed that the inhibiting effect of straw mulching on soil water evaporation during the freeze-thaw period reached 24?56.7%, and straw mulch reduced the range of daily soil water evaporation by 2.02?2.48 mm, the effects of random factors on the daily soil water evaporation were significantly decreased. The highest soil water evaporation rate occurs during the unstable freezing stage, and the lowest occurs during the stable freezing stage. When the straw mulch thickness exceeded 10 cm, the effect of increasing straw mulch thickness on daily soil water evaporation was reduced. The straw mulch layer could not completely inhibit the effect of the external environment on soil water evaporation even when the straw mulch thickness was increased to 30 cm. This research results can provide a basis for the scientific evaluation and prevention of soil water evaporation in arid and semi-arid areas.

 Artículos similares

       
 
Dongqing Wang, Xiaohua Yang, Shasha Zhang, Chi Chen and Yanhu Zhao    
In order to study the long-term bearing capacity of concrete pile composite foundation in the Salt Lake area, based on the Tehran Isfahan high-speed railway project in Iran, the full (semi) immersion drying test and rapid freeze-thaw test was carried out... ver más
Revista: Buildings

 
Wenze Geng, Zhifei Song, Cheng He, Hongtao Wang and Xinyi Dong    
The type of soil and its compactness significantly influence its permeability coefficient, which in turn affects the drainage difficulty of soil pore water and the distribution of the infiltration line. However, current tailings dam models typically cons... ver más
Revista: Applied Sciences

 
Heng Liu, Wenzhi Xu, Quanchun Yuan, Jin Zeng, Xiaohui Lei and Xiaolan Lyu    
In addressing the challenges of high energy consumption and low efficiency in fertilization borehole drilling for clayey soils in southern orchards, this study utilizes the Discrete Element Method to establish a simulation model for clayey soils. Through... ver más
Revista: Applied Sciences

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Dandan Liu, Yaowen Chang, Lei Sun, Yunpeng Wang, Jiayu Guo, Luyue Xu, Xia Liu and Zhaofei Fan    
Uncovering the complex periodic variations in soil moisture can provide a significant reference for climate prediction and hydrological process simulation. We used wavelet analysis to quantify and identify the multi-scale periodic variations of soil mois... ver más
Revista: Water