Inicio  /  ChemEngineering  /  Vol: 4 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Mechanical Behavior of Toughened Epoxy Structural Adhesives for Impact Applications

Gamze S. Bas and Erol Sancaktar    

Resumen

The focus of our study is to identify physical properties of different impact-resistant/toughened structural adhesives and identify/develop an elastic-viscoelastic-plastic model as a function of loading rate by using Ludwik-type equations to be able to predict adhesive behavior at higher loading rates and to make cars more crashworthy. For this purpose, we first characterized eight different commercial toughened epoxy structural adhesives to provide detailed information about their constituents using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and energy dispersive x-ray spectrometer (EDS). Most (but not all) of the model adhesives contained organic tougheners in the form of carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, as well as polyurethane adducts. The main crystalline inorganic phases were found as calcite (CaCO3), wollastonite (CaSiO3) or calcium silicate (CaSiO3), talc (Mg3Si4O10 (OH)2), zeolite which is an alumina silicate based mineral and has many different elements in its composition (M2/nO·Al2O3·xSiO2·yH2O, M can be Mg, Na, Ca, K, Li). The total amount of inorganic fillers was found to be different in each adhesive. Material behavior of the model adhesives were determined via tensile tests and Single Lap Joint (SLJ) tests in shear. Split Hopkinson pressure bar (SHPB) was also used to measure the strain and stress values at higher strain rates in the order of 102 s-1, which is generally encountered in impact related loading situations. Toughness values in the range ~0.5 to ~1.35 MJ/m3 were observed with the model adhesives tested in tensile mode within the ~3 × 10-3 to 0.18 m/m/s strain rate range. The softening behavior of the elastic moduli at higher strain rates observed during tensile testing was also observed with SHPB testing. It is remarkable that, overall, the modulus magnitudes seem to be similar between the tensile test and SHPB specimens within this softening range of the initial bilinear elastic behavior observed. When the results from bulk (tensile) and bonded (shear) specimens were compared, it was clearly seen that the toughness responses of the adhesives to (tensile/shear) strain rates in the bulk and bonded forms, respectively, were different, with the bonded shear toughness values in the ~25 to ~120 MJ/m3 range within ~1.25 to ~25 mm/mm/s shear strain range. The model adhesive which included just inorganic fillers had the lowest tensile toughness at the lowest tensile strain rate, but the highest slope in its tensile toughness regression line, exhibited the second highest bonded shear toughness. When tested at the extension rates of 25 mm/min and 100 mm/min in bonded lap shear, the same adhesive exhibited limited interfacial failure areas, however the dominant failure mode was cohesive failure. When the extension rate increased further, transition to interfacial (adhesive) failure was observed revealing that interfacial failures do not necessarily diminish adhesive bond toughness. Our observations point to the fact that cohesive deformation/failure processes indicating interfacial separations, inter-particle interactions as well as polymer matrix deformation in high deformation loading scenario as in bonded shear loadings may provide the highest toughness. Apparently, a large inorganic filler weight fraction is not necessary to obtain high shear toughness in bonded form since the highest bonded shear toughness was obtained with the adhesive which had the least amount of inorganic fillers among the model adhesives with 14.72 wt %.

 Artículos similares

       
 
Aras Dalgiç and Berivan Yilmazer Polat    
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to h... ver más
Revista: Applied Sciences

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Yangbing Cao, Qiang Yan, Sui Zhang and Fuming Cai    
Shale is a common rock type that is associated with underground engineering projects, and several important factors, such as bedding structure, confining pressure, and the loading and unloading path, significantly influence the anisotropy of shale. Triax... ver más
Revista: Applied Sciences

 
Hao Chai, Xi?an Li, Biao Qin, Weiping Wang and Mani Axel    
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of ... ver más
Revista: Water

 
Bofu Zheng, Dan Wang, Yuxin Chen, Yihui Jiang, Fangqing Hu, Liliang Xu, Jihong Zhang and Jinqi Zhu    
Background: Vegetation roots are considered to play an effective role in controlling soil erosion by benefiting soil hydrology and mechanical properties. However, the correlation between soil hydrology and the mechanical features associated with the vari... ver más
Revista: Water