Inicio  /  Applied Sciences  /  Vol: 12 Par: 15 (2022)  /  Artículo
ARTÍCULO
TITULO

Study on the Measurement of the On-Site Overvoltage and Internal Temperature Rise Simulation of the EMU Arrester

Shenghui Wang    
Qi Ou    
Shengfeng Lei    
Huaqi Liu    
Shuaitao Mao    
Qizhe Zhang    
Jian Liu and Fangcheng Lv    

Resumen

In order to analyze the explosion accidents of the CRH5 EMU roof arrester in recent years, an internal temperature measuring platform based on fluorescence fiber was established, and the temperature distribution characteristics under the continuous operating voltage and high-current impulse were analyzed. The test results show that passing section overvoltage and steep impulse overvoltage have higher amplitudes, while high-harmonic overvoltage has a lower amplitude but a longer duration. The maximum temperature rise of the arrester was 5.2 °C under 34 kV for 3 h. The surface temperature of the valve plate column was high in the middle and low on both sides; the maximum temperature difference at different positions was only 2.2 °C. The maximum temperature of the valve plate column rose to 97.6 °C under 105 times of the high-current impulse, and the maximum temperature difference at different positions reached 33.8 °C. Then, the actual overvoltage of the arrester in operation was measured and analyzed statistically, and the arrester simulation model was established. The temperature characteristics of the normal arrester and the arrester with the electric tree were studied under the actual typical overvoltage, and the influence of air velocity on the internal temperature rise was analyzed. The simulation results show that, due to the low amplitude and small current of high-harmonic overvoltage, the internal temperature rise of the normal and defective arresters was very small. Under the effects of passing section overvoltage and steep impulse overvoltage, the internal temperature of the normal arrester can reach 36.57 °C and 241 °C, and the arrester with the electric tree defect can reach 44.75 °C and 536 °C, respectively. The air velocity has little effect on the internal temperature rise of the arrester. Passing section overvoltage and steep impulse overvoltage occur frequently and have an obvious influence on the internal temperature rise of the arrester, so the roof overvoltage of the EMU is an important reason for the arrester burst.

 Artículos similares

       
 
Jacek G. Puchalski, Janusz D. Fidelus and Pawel Fotowicz    
One of the fundamental challenges in analyzing wind turbine performance is the occurrence of torque creep under load and without load. This phenomenon significantly impacts the proper functioning of torque transducers, thus necessitating the utilization ... ver más
Revista: Algorithms

 
Dong Liu, Mengli Wu and Dimitri Donskoy    
This study investigates the application of Ultrasonic Pulse Velocity (UPV) for crack depth estimation in cylindrical structures, focusing on two approaches: reference measurement and dual measurement. It addresses the challenge of applying UPV to curved ... ver más
Revista: Acoustics

 
Nadine Rehfeld, Jean-Denis Brassard, Masafumi Yamazaki, Hirotaka Sakaue, Marcella Balordi, Heli Koivuluoto, Julio Mora, Jianying He, Marie-Laure Pervier, Ali Dolatabadi, Emily Asenath-Smith, Mikael Järn, Xianghui Hou and Volkmar Stenzel    
Ice adhesion tests are widely used to assess the performance of potential icephobic surfaces and coatings. A great variety of test designs have been developed and used over the past decades due to the lack of formal standards for these types of tests. In... ver más
Revista: Aerospace

 
Jiwun Yoon, Sang-Yong Lee and Ji-Yong Lee    
Humans share a similar body structure, but each individual possesses unique characteristics, which we define as one?s body type. Various classification methods have been devised to understand and assess these body types. Recent research has applied artif... ver más
Revista: Applied Sciences

 
Chan-Sol Park, Soo-Jin Ahn, Yeong-Bae Lee and Chang-Ki Kang    
In ultrasound diagnostics, acoustic absorbers block unwanted acoustic energy or prevent the reception of echo signals from structures outside the target area. Non-metallic absorbers provide a low-echoic signal that is suitable for observing the anatomy o... ver más
Revista: Applied Sciences