Inicio  /  Applied Sciences  /  Vol: 13 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

A Neural Network Approach to a Grayscale Image-Based Multi-File Type Malware Detection System

Abigail Copiaco    
Leena El Neel    
Tasnim Nazzal    
Husameldin Mukhtar and Walid Obaid    

Resumen

This study introduces an innovative all-in-one malware identification model that significantly enhances convenience and resource efficiency in classifying malware across diverse file types. Traditional malware identification methods involve the extraction of static and dynamic features, followed by comparisons with signature-based databases or machine learning-based classifiers. However, many malware detection applications that rely on transfer learning and image transformation suffer from excessive resource consumption. In recent years, transfer learning has emerged as a powerful tool for developing effective classifiers, leveraging pre-trained neural network models. In this research, we comprehensively explore various pre-trained network architectures, including compact and conventional networks, as well as series and directed acyclic graph configurations for malware classification. Our approach utilizes grayscale transform-based features as a standardized set of characteristics, streamlining malware classification across various file types. To ensure the robustness and generalization of our classification models, we integrate multiple datasets into the training process. Remarkably, we achieve an optimal model with 96% accuracy, while maintaining a modest 5 MB size using the SqueezeNet classifier. Overall, our model efficiently classifies malware across file types, reducing the computational load, which can be useful for cybersecurity professionals and organizations.

 Artículos similares

       
 
Pengyun Chen, Zhiru Li, Guangqing Liu, Ziyi Wang, Jiayu Chen, Shangyao Shi, Jian Shen and Lizhou Li    
The positioning results of terrain matching in flat terrain areas will significantly deteriorate due to the influence of terrain nonlinearity and multibeam measurement noise. To tackle this problem, this study presents the Pulse-Coupled Neural Network (P... ver más

 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más

 
Min Xu, Wenjie Tian and Xiangpeng Zhang    
The three-degrees-of-freedom (3-DOF) parallel robot is commonly employed as a shipborne stabilized platform for real-time compensation of ship disturbances. Pose accuracy is one of its most critical performance indicators. Currently, neural networks have... ver más

 
Shun Wang, Jiayan Wang, Zhikang Xu, Ji Wang, Rui Li and Jinliang Dai    
The application of titanium alloy in shipbuilding can reduce ship weight and carbon emissions. To solve the problem of titanium alloy forming, the deformation prediction of titanium alloy line heating based on a backpropagation (BP) neural network and sp... ver más

 
Yifan Shang, Wanneng Yu, Guangmiao Zeng, Huihui Li and Yuegao Wu    
Image recognition is vital for intelligent ships? autonomous navigation. However, traditional methods often fail to accurately identify maritime objects? spatial positions, especially under electromagnetic silence. We introduce the StereoYOLO method, an ... ver más