Inicio  /  Water  /  Vol: 9 Par: 5 (2017)  /  Artículo
ARTÍCULO
TITULO

Comparison of Spatial Interpolation Schemes for Rainfall Data and Application in Hydrological Modeling

Tao Chen    
Liliang Ren    
Fei Yuan    
Xiaoli Yang    
Shanhu Jiang    
Tiantian Tang    
Yi Liu    
Chongxu Zhao and Liming Zhang    

Resumen

The spatial distribution of precipitation is an important aspect of water-related research. The use of different interpolation schemes in the same catchment may cause large differences and deviations from the actual spatial distribution of rainfall. Our study analyzes different methods of spatial rainfall interpolation at annual, daily, and hourly time scales to provide a comprehensive evaluation. An improved regression-based scheme is proposed using principal component regression with residual correction (PCRR) and is compared with inverse distance weighting (IDW) and multiple linear regression (MLR) interpolation methods. In this study, the meso-scale catchment of the Fuhe River in southeastern China was selected as a typical region. Furthermore, a hydrological model HEC-HMS was used to calculate streamflow and to evaluate the impact of rainfall interpolation methods on the results of the hydrological model. Results show that the PCRR method performed better than the other methods tested in the study and can effectively eliminate the interpolation anomalies caused by terrain differences between observation points and surrounding areas. Simulated streamflow showed different characteristics based on the mean, maximum, minimum, and peak flows. The results simulated by PCRR exhibited the lowest streamflow error and highest correlation with measured values at the daily time scale. The application of the PCRR method is found to be promising because it considers multicollinearity among variables.

Palabras claves

 Artículos similares

       
 
Ashish Bisht, Leo Cavazzini, Matteo Centis Vignali, Fabiola Caso, Omar Hammad Ali, Francesco Ficorella, Maurizio Boscardin and Giovanni Paternoster    
This work explores the possibility of using Low Gain Avalanche Diodes (LGADs) for tracker-based experiments studying Charged Cosmic Rays (CCRs) in space. While conventional silicon microstrip sensors provide only spatial information about the charged par... ver más
Revista: Instruments

 
Xiaolei Zhang, Zhengzheng Bi, Junguo Liu, Zhiheng Xu and Xiaoyi Guo    
The calculation of erosion and deposition in riverways plays a pivotal role in river morphology studies, comprehensive river management and flood safety. Some existing methods have certain limitations in terms of accuracy and applicability. To address th... ver más
Revista: Water

 
Munsu Kim, Lorena Perez-Andrade, Luke N. Brewer and Gregory W. Kubacki    
This paper investigates the effect of the microstructure on the corrosion behavior of cold sprayed (CS) AA5083 compared to its wrought counterpart. It has been shown that the microstructure of CS aluminum alloys, such as AA2024, AA6061, and AA7075, affec... ver más

 
Nitesh Awasthi, Jayant Nath Tripathi, George P. Petropoulos, Pradeep Kumar, Abhay Kumar Singh, Kailas Kamaji Dakhore, Kripan Ghosh, Dileep Kumar Gupta, Prashant K. Srivastava, Kleomenis Kalogeropoulos, Sartajvir Singh and Dhiraj Kumar Singh    
This study involved an investigation of the long-term seasonal rainfall patterns in central India at the district level during the period from 1991 to 2020, including various aspects such as the spatiotemporal seasonal trend of rainfall patterns, rainfal... ver más
Revista: Hydrology

 
Minghao Liu, Jianxiang Wang, Qingxi Luo, Lingbo Sun and Enming Wang    
Exploring spatial anisotropy features and capturing spatial interactions during urban change simulation is of great significance to enhance the effectiveness of dynamic urban modeling and improve simulation accuracy. Addressing the inadequacies of curren... ver más