Inicio  /  Water  /  Vol: 11 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Experimental Analysis of the Influence of Aeration in the Energy Dissipation of Supercritical Channel Flows

Juan José Rebollo    
David López    
Luis Garrote    
Tamara Ramos    
Rubén Díaz and Ricardo Herrero    

Resumen

Energy dissipation structures play an important role in flood risk management. Many variables need to be considered for the design of these structures. Aeration has been one of the more studied phenomena over the last years, due to its influence in the performance of hydraulic structures. The purpose of the work presented in this article is to experimentally characterize the effects of aeration on boundary friction in supercritical and fully turbulent flows. The physical model used to analyze the aeration effects consists of a spillway chute 6.5 m high and a stilling basin of 10 m length and 2 m high. A pump and compressor supply the water-air mixture and are controlled at the entrance by valves and flowmeters. The ensuing channel is monitored to determine the velocity profile and air concentration of the flow into the stilling basin. The average values of both variables and Manning?s coefficient along the channel are used to determine the relation between air concentration and energy dissipation by friction. A velocity increase with greater air entrainment has been found in all scenarios since friction is the main energy dissipation mechanism in open channels flow. Finally, an equation is proposed to characterize this evolution based on the results obtained.

 Artículos similares

       
 
Longfei Zhang, Xiang Lan, Kechuan Wu and Wenzheng Yu    
When subjected to seismic activity, tall isolated buildings with a high aspect ratio are susceptible to overturning as a result of the failure of rubber isolation bearings under tension. In order to address this issue, a guided-rail tension device (GR) h... ver más
Revista: Buildings

 
Yan Xi, Junhao Xing, Jiajia Feng, Congming Ma, Xiutian Yang, Yudong Tian and Xin Liu    
Cement has been widely used as a structural material in many underground projects, and these projects often face high- or ultra-high-temperature environments, leading to the deterioration of the mechanical, porosity, and permeability properties of set ce... ver más
Revista: Buildings

 
Matteo Dellacasagrande, Davide Lengani, Daniele Simoni and Marina Ubaldi    
The bursting phenomenon consists in the switch of a laminar separation bubble from a short to a long configuration. In the former case, reduced effects on profile pressure distribution are typically observed with respect to the attached condition. On the... ver más

 
Yichi Chen, Wangqiang Niu, Yanhua Yang and Yassine Amirat    
The eddy current loss caused by the conductivity of seawater results in a relatively low transfer efficiency of underwater wireless power transfer (WPT). And the transfer distance of the current WPT system is relatively short. Considering that most of th... ver más

 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más