Inicio  /  Applied Sciences  /  Vol: 13 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on Feature Extraction of Meteorological Disaster Emergency Response Capability Based on an RNN Autoencoder

Jiansong Tang    
Ruijia Yang    
Qiangsheng Dai    
Gaoteng Yuan and Yingchi Mao    

Resumen

Climate change has increased the frequency of various types of meteorological disasters in recent years. Finding the primary factors that limit the emergency response capability of meteorological disasters through the evaluation of that capability and proposing corresponding improvement measures in order to increase that capability is of great practical importance. The evaluation of meteorological disaster emergency response capability still has some issues. The majority of research methods use qualitative analysis, which makes it challenging to deal with fuzzy factors, leading to conclusions that are subjective and insufficiently rigorous. The evaluation models themselves are also complex and challenging to simulate and analyze, making it challenging to promote and use them in practice. Deep learning techniques have made it easier to collect and process large amounts of data, which has opened new avenues for advancement in the emergency management of weather-related disasters. In this paper, we suggest a Recurrent Neural Network (RNN)-based dynamic capability feature extraction method. The process of evaluation content determination and index selection is used to build a meteorological disaster emergency response capability evaluation index system before an encoder, based on the encoder?decoder architecture, is built for dynamic feature extraction. The RNN autoencoder deep learning ability dynamic rating method used in this paper has been shown through a series of experiments to be able to not only efficiently extract ability features from time series data and reduce the dimensionality of ability features, but also to reduce the focus of the ability evaluation model on simple and abnormal samples, concentrate the model learning on difficult samples, and have a higher accuracy. As a result, it is more suitable for the problem situation at evaluation of the disaster capability.

 Artículos similares

       
 
Xiaoqin Xue, Chao Ren, Anchao Yin, Ying Zhou, Yuanyuan Liu, Cong Ding and Jiakai Lu    
In the domain of remote sensing research, the extraction of roads from high-resolution imagery remains a formidable challenge. In this paper, we introduce an advanced architecture called PCCAU-Net, which integrates Pyramid Pathway Input, CoordConv convol... ver más
Revista: Applied Sciences

 
Liu Yang, Gang Wang and Hongjun Wang    
Aligned with global Sustainable Development Goals (SDGs) and multidisciplinary approaches integrating AI with sustainability, this research introduces an innovative AI framework for analyzing Modern French Poetry. It applies feature extraction techniques... ver más
Revista: Information

 
Yunzhou Chen, Shumin Wang, Ziying Gu and Fan Yang    
Spatial population distribution data is the discretization of demographic data into spatial grids, which has vital reference significance for disaster emergency response, disaster assessment, emergency rescue resource allocation, and post-disaster recons... ver más
Revista: Applied Sciences

 
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu    
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ... ver más

 
Héctor Rubén Díaz Ojeda, Sebastian Oyuela, Roberto Sosa, Alejandro Daniel Otero and Francisco Pérez Arribas    
Naval hydrodynamics typically focus on reducing ship resistance, which can be achieved by incorporating a bulbous bow. This feature is commonly used in the merchant fleet and smaller vessels, such as fishing boats, to minimize wave-making resistance. How... ver más