ARTÍCULO
TITULO

A Fully Coupled CFD-DMB Approach on the Ship Hydroelasticity of a Containership in Extreme Wave Conditions

Yujia Wei    
Atilla Incecik and Tahsin Tezdogan    

Resumen

In this paper, we present a fully coupled computational fluid dynamic (CFD) and discrete module beam (DMB) method for the numerical prediction of nonlinear hydroelastic responses of a ship advancing in regular and focused wave conditions. A two-way data communication scheme is applied between two solvers, whereby the external fluid pressure exported from the CFD simulation is used to derive the structural responses in the DMB solver, and the structural deformations are fed back into the CFD solver to deform the mesh. We first conduct a series of verification and validation studies by using the present CFD?DMB method to investigate the global ship motion, vertical bending moments (VBMs), and green water phenomenon of the ship in different regular wave conditions. The numerical results agreed favourably with the CFD?FEA model and experimental measurements. Then, the extreme ship motions are studied in focused wave conditions to represent extreme sea conditions that a ship may experience in a real sea state. According to the conclusion drawn from the numerical simulations, it is founded that the focused wave case will lead to the increase of the longitudinal responses of the hull compared to regular wave condition, i.e., the heave, pitch, and total VBMs rise about 25% 25 % , 20% 20 % and 9% 9 % , respectively. In focused wave conditions, intensive ship responses and severe waves cause stronger slamming phenomena. It is found that the instantaneous impact pressure from the focused wave is higher and sharper compared to the regular waves and comes along with the obvious green-water-on-deck phenomena.

 Artículos similares

       
 
Bingyu Song, Yingwu Chen, Qing Yang, Yahui Zuo, Shilong Xu and Yuning Chen    
The multi-satellite on-board observation planning (MSOOP) is a variant of the multi-agent task allocation problem (MATAP). MSOOP is used to complete the observation task allocation in a fully cooperative mode to maximize the profits of the whole system. ... ver más
Revista: Algorithms

 
Maria Vasilyeva, Sergei Stepanov, Alexey Sadovski and Stephen Henry    
We consider the multispecies model described by a coupled system of diffusion?reaction equations, where the coupling and nonlinearity are given in the reaction part. We construct a semi-discrete form using a finite volume approximation by space. The full... ver más
Revista: Computation

 
Yinfeng Tang, Donghai Jiang, Tongxu Wang, Hengjie Luan, Jiangwei Liu and Sunhao Zhang    
In order to study the local deformation of an anchor bolt and the improvement in the shear strength of a structural surface under the misalignment of an anchorage structure surface, FLAC3D software was used to simulate granite, sandstone, and coal specim... ver más
Revista: Applied Sciences

 
Raufar Shameem, Lukas M. Bongartz, Anton Weissbach, Hans Kleemann and Karl Leo    
The ability to bridge ionic and electronic transport coupled with large volumetric capacitance renders organic electrochemical transistors (OECTs) ideal candidates for bioelectronic applications. Adopting ionic-liquid-based solid electrolytes extends the... ver más
Revista: Applied Sciences

 
José D. Hoyos, Camilo Echavarría, Juan P. Alvarado, Gustavo Suárez, Juliana A. Niño and Jorge I. García    
An aero-structural algorithm to optimize a flying wing in cruise conditions for preliminary design is developed using two-way interaction between the structure and aerodynamics. A particle swarm routine is employed to solve the multi-objective optimizati... ver más
Revista: Aerospace