Inicio  /  Applied Sciences  /  Vol: 12 Par: 16 (2022)  /  Artículo
ARTÍCULO
TITULO

Biophysical Controls That Make Erosion-Transported Soil Carbon a Source of Greenhouse Gases

Rattan Lal    

Resumen

Soil erosion is a selective process which removes the light fraction comprised of soil organic carbon (SOC) and colloidal particles of clay and fine silt. Thus, a large amount of carbon (C) is transported by erosional processes, and its fate (i.e., emission, redistribution, burial, and translocation into aquatic ecosystems) has a strong impact on the global carbon cycle. The processes affecting the dynamics of soil C emission as greenhouse gases (i.e., CO2, CH4, N2O), or its deposition and burial, vary among different stages of soil erosion: detachment, transport, redistribution, deposition or burial, and aquatic ecosystems. Specific biogeochemical and biogeophysical transformative processes which make erosion-transported carbon a source of C emission are determined by the type of erosion (rill vs. inter-rill in hydric and saltation erosion vs. air-borne dust in aeolian erosion), soil temperature and moisture regimes, initial SOC content, texture, raindrop-stable aggregates and water repellency, crusting, slope gradient, physiography and the slope-based flow patterns, landscape position, and the attendant aerobic vs. anaerobic conditions within the landscape where the sediment-laden C is being carried by alluvial and aeolian processes. As much as 20?40% of eroded SOC may be oxidized after erosion, and erosion-induced redistribution may be a large source of C. In addition, human activities (e.g., land use and management) have altered?and are altering?the redistribution pattern of sediments and C being transported. In addition to O2 availability, other factors affecting emissions from aquatic ecosystems include sub-surface currents and high winds, which may also affect CH4 efflux. The transport by aeolian processes is affected by wind speed, soil texture and structure, vegetation cover, etc. Lighter fractions (SOC, clay, and fine silt) are also selectively removed in the wind-blown dust. The SOC-ER of dust originating from sand-rich soil may range from 2 to 41. A majority of the C (and nutrients) lost by aeolian erosion may be removed by saltation. Even over a short period of three seasons, wind erosion can remove up to 25% of total organic C (TOC) and total N (TN) from the top 5 cm of soil. A large proportion of C being transported by hydric and aeolian erosional processes is emitted into the atmosphere as CO2 and CH4, along with N2O. While some of the C buried at the depositional site or transported deep into the aquatic ecosystems may be encapsulated within reformed soil aggregates or protected against microbial processes, even the buried SOC may be vulnerable to future loss by land use, management, alkalinity or pH, the time lag between burial and subsequent loss, mineralogical properties, and global warming.

 Artículos similares

       
 
Erlangga Ibrahim, Hikhmadhan Gultaf, Hendra Saputra, Lea Kristi Agustina, Virgian Rahmanda, Cahli Suhendi, M. R. P. Sudibyo, Reza Rizki     Pág. 107 - 110
Institut Teknologi Sumatera (ITERA), ITB and local governments had been cooperated in establishing an astronomy observatory of ITERA Lampung (OAIL), which was located at Mt. Betung in the Pasawaran area. Geological setting of this area showed that the do... ver más

 
Vanessa Gonçalves, Antonio Albuquerque, Pedro Gabriel Almeida, Luís Ferreira Gomes and Victor Cavaleiro    
The risk of aquifer contamination is determined by the interaction between the pollutant load and the vulnerability of an aquifer. Owing to the decomposition of bodies and degradation of artefacts, cemeteries may have a negative impact on groundwater qua... ver más
Revista: Water

 
Takahiro Yoshikawa and Toshihiro Noda    
Immense liquefaction damage was observed in the 2011 off the Pacific coast of Tohoku Earthquake. It was reported that, in Chiba Prefecture, Japan, the main shock oozed muddy water from the sandy ground and the aftershock which occurred 29 min after the m... ver más
Revista: Water

 
Aaron A. Akin, Gia Nguyen and Aleksey Y. Sheshukov    
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes f... ver más
Revista: Water

 
Solomon Ofori, David Kwesi Abebrese, Iveta Ru?icková and Jirí Wanner    
This study evaluates the suitability of treated wastewater (TWW: secondary effluent and membrane effluent) for crop irrigation and the resultant impact on crop growth and soil physicochemical characteristics. Carrot seeds (Daucus carota subsp. sativus) w... ver más
Revista: Water