ARTÍCULO
TITULO

A Flood Risk Assessment of the LaHave River Watershed, Canada Using GIS Techniques and an Unstructured Grid Combined River-Coastal Hydrodynamic Model

Kevin McGuigan    
Tim Webster and Kate Collins    

Resumen

A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level subtracted from the lidar digital elevation model.

 Artículos similares

       
 
Linpei Zhai and Jae Eun Lee    
This study aimed to explore the differences in various aspects of community disaster resilience and how to enhance disaster resilience tailored to different community types. The evaluation results were validated using the flood event that occurred in Zhe... ver más
Revista: Water

 
Qing Li, Yu Li, Lingyun Zhao, Zhixiong Zhang, Yu Wang and Meihong Ma    
Accurately assessing the risk of flash floods is a fundamental prerequisite for defending against flash flood disasters. The existing methods for assessing flash flood risk are constrained by unclear key factors and challenges in elucidating disaster mec... ver más
Revista: Water

 
Kees Nederhoff, Sean C. Crosby, Nate R. Van Arendonk, Eric E. Grossman, Babak Tehranirad, Tim Leijnse, Wouter Klessens and Patrick L. Barnard    
The Puget Sound Coastal Storm Modeling System (PS-CoSMoS) is a tool designed to dynamically downscale future climate scenarios (i.e., projected changes in wind and pressure fields and temperature) to compute regional water levels, waves, and compound flo... ver más
Revista: Water

 
Ana M. Petrovic, Igor Le?ce?en and Ivan Radevski    
This paper presents a comprehensive analysis of flood frequency and a spatio-temporal characterization of historical torrential floods in the ?umadija region using water discharge datasets and documented events. A chronology of 344 recorded torrential fl... ver más
Revista: Water

 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water