Inicio  /  Water  /  Vol: 15 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

Seepage Characteristics of Shale Fracture and the Effect of Filling Sand under Normal Stress

Yan Gong    
Xinghua Xie and Jingkai Liu    

Resumen

As a new type of unconventional natural gas resource, shale gas plays a vital role in energy supply. In order to deeply understand the shale fracture seepage characteristics, filled and unfilled fracture seepage tests were carried out on shale samples with different fracture surface topography with the use of self-developed shale fracture seepage testing equipment. The fitting formula that the seepage discharge decreased as a negative exponential function with the increase in normal stress was obtained in the unfilled fracture seepage test; the fitting coefficient had a good logarithmic and exponential function relationship with joint roughness coefficient JRC and surface development interface area ratio Sdr. Meanwhile, the modified cubic law was obtained by adding the correction coefficient. The correction coefficient had an exponential relationship with the anisotropy value Ka. Compared with the unfilled one, the fracture surface topography had little effect on the seepage discharge when it was filled. The experimental results show the effects of water head difference, fracture surface topography, particle size, and thickness of filling sand on shale fracture seepage characteristics under different normal stress conditions, which have a certain significance for improving the efficiency of shale gas production.

 Artículos similares

       
 
Meng Yao, Qing Wang, Qingbo Yu, Jianzhong Wu, Hui Li, Jiaqi Dong, Weitong Xia, Yan Han and Xinlei Huang    
Artificial reclamation is one of the main means of land expansion in coastal cities. However, the permeability of underlying soft clay (USC), derived from the dredged load, has not been paid enough attention, although it is closely related to the long-te... ver más
Revista: Water

 
Xin Li, Yang Li, Qiang Li, Xiaozhou Zhang, Xuechen Shi, Yudong Lu, Shaoxiong Zhang and Liting Zhang    
Preferential flow is widely developed in varieties of voids (such as macropores and fissures) in loess areas, affecting slope hydrology and stability and even leading to geological disasters. However, the model of seepage evolution with dynamic preferent... ver más
Revista: Water

 
Xufen Zhu, Wenjie Yang, Jie Zhang, Yong Huang and Lifang Zou    
Due to its poor hydro-physical properties and other characteristics, argillaceous dolomite is susceptible to seepage failure under high water pressure, affecting the seepage stability of a rock mass. To ensure the safety of the project, when the argillac... ver más
Revista: Water

 
Zezhi Deng, Xiangshan Chen, Wei Jin and Gang Wang    
Internal erosion refers to the seepage-induced fine particle migration phenomenon in soil. Deep alluviums in valleys usually contain cohesionless gap-graded sandy gravels with poor internal stability. The construction of embankment dams on such alluviums... ver más
Revista: Water

 
Jiayi Peng, Zhenzhong Shen, Wenbing Zhang and Wen Song    
Permeability characteristics in coarse-grained soil is pivotal for enhancing the understanding of its seepage behavior and effectively managing it, directly impacting the design, construction, and operational safety of embankment dams. Furthermore, these... ver más
Revista: Water