Inicio  /  Informatics  /  Vol: 7 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Machine Learning for Identifying Medication-Associated Acute Kidney Injury

Sheikh S. Abdullah    
Neda Rostamzadeh    
Kamran Sedig    
Daniel J. Lizotte    
Amit X. Garg and Eric McArthur    

Resumen

One of the prominent problems in clinical medicine is medication-induced acute kidney injury (AKI). Avoiding this problem can prevent patient harm and reduce healthcare expenditures. Several researches have been conducted to identify AKI-associated medications using statistical, data mining, and machine learning techniques. However, these studies are limited to assessing the impact of known nephrotoxic medications and do not comprehensively explore the relationship between medication combinations and AKI. In this paper, we present a population-based retrospective cohort study that employs automated data analysis techniques to identify medications and medication combinations that are associated with a higher risk of AKI. By integrating multivariable logistic regression, frequent itemset mining, and stratified analysis, this study is designed to explore the complex relationships between medications and AKI in such a way that has never been attempted before. Through an analysis of prescription records of one million older patients stored in the healthcare administrative dataset at ICES (an independent, non-profit, world-leading research organization that uses population-based health and social data to produce knowledge on a broad range of healthcare issues), we identified 55 AKI-associated medications among 595 distinct medications and 78 AKI-associated medication combinations among 7748 frequent medication combinations. In addition, through a stratified analysis, we identified 37 cases where a particular medication was associated with increasing the risk of AKI when used with another medication. We have shown that our results are consistent with previous studies through consultation with a nephrologist and an electronic literature search. This research demonstrates how automated analysis techniques can be used to accomplish data-driven tasks using massive clinical datasets.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences