Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Information  /  Vol: 15 Par: 4 (2024)  /  Artículo

S-YOLOv5: A Lightweight Model for Detecting Objects Thrown from Tall Buildings in Communities

Yuntao Shi    
Qi Luo    
Meng Zhou    
Wei Guo    
Jie Li    
Shuqin Li and Yu Ding    


Objects thrown from tall buildings in communities are characterized by their small size, inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges, including excessive parameters, overly complex models that are difficult to implement, and insufficient detection accuracy. This study proposes a lightweight detection model for objects thrown from tall buildings in communities, named S-YOLOv5, to address these issues. The model is based on the YOLOv5 algorithm, and a lightweight convolutional neural network, Enhanced ShuffleNet (ESNet), is chosen as the backbone network to extract image features. On this basis, the initial stage of the backbone network is enhanced and the simplified attention module (SimAM) attention mechanism is added to utilize the rich position information and contour information in the shallow feature map to improve the detection of small targets. For feature fusion, the sparsely connected Path Aggregation Network (SCPANet) module is designed to use sparsely connected convolution (SCConv) instead of the regular convolution of the Path Aggregation Network (PANet) to fuse features efficiently. In addition, the model uses the normalized Wasserstein distance (NWD) loss function to reduce the sensitivity of positional bias. The accuracy of the model is further improved. Test results from the self-built objects thrown from tall buildings dataset show that S-YOLOv5 can detect objects thrown from tall buildings quickly and accurately, with an accuracy of 90.2% and a detection rate of 34.1 Fps/s. Compared with the original YOLOv5 model, the parameters are reduced by 87.3%, and the accuracy and rate are improved by 0.8% and 63%, respectively.

 Artículos similares